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Abstract 

 Monitoring vital signs of neonates can be harmful and 

lead to developmental troubles. Ballistocardiography, a 

contactless heart rate monitoring method, has the 

potential to reduce this monitoring pain. But signal 

processing is uneasy due to noise, inherent physiological 

variability and artifacts (e.g. respiratory amplitude 

modulation and body position shifts). We propose a new 

detection of heartbeats using a dynamic time warping 

(DTW) template matching method. A heartbeat template 

is automatically trained and the most similar potential 

heartbeats in the signal are classified as heartbeats. Data 

normalizing and DTW steps overcome amplitude and time 

variability issues. The DTW template matching algorithm 

has been tested on a 20 to 50 minutes-long BCG records 

of ten healthy adults in noisy conditions. It is suitable for 

medical, real-time and low-cost applications. 

 

 

1. Introduction 

 The physiological state (cardiac and respiratory 

activities) of children in hospital environment is usually 

evaluated by electrocardiography (ECG) and 

photoplethysmography (PPG). The former uses electrodes 

on the thorax and on the limbs extremities; the latter uses 

pulse oximetry probes that tweak either a finger or a toe. 

Monitoring children is difficult because of their high 

mobility that leads to repetitive artifacts and false alarms. 

Moreover, electrodes peel off the epidermis and pulse 

oximetry probes can regularly detach from the finger or 

toe. Several factors are involved: the child twitches and 

pulls the probes, the electrode adhesive is worn or the 

nursing staff could not properly set up the electrodes. 

Children pain, which may be monitored by heart rate 

variability (HRV) [1] or infrared thermography [2], 

affects the neuro-motor and cognitive development 

especially for preterm neonates [3]. Finally, this 

equipment is expensive to install and maintain; given the 

elements described above, it must be changed several 

times during hospitalization. Consequently, a non-

intrusive apparatus is necessary to detect children 

heartbeats in a harmless way. 
Ballistocardiography is a non-intrusive monitoring 

method for cardiac activity. It was invented at the end of 

the 19th century but supplanted by the first 

electrocardiographs, improving precision and robustness 

at that time. Today, with new sensor technologies and 

digital signal processing, this technology is gaining 

renewed interest. Ballistocardiography’s principle relies 

on measuring ballistic forces [4]: during ventricular 

systole, blood is ejected from the left ventricle through 

the aortic arch, generating a pulsed cardiac ballistic force. 

This mechanical phenomenon allows contactless 

measurements of a pressure variation (e.g strain gauge) or 

a deformation (e.g accelerometers) of the patient bed or 

mattress. A ballistocardiogram (BCG) is a record of this 

mechanical phenomenon characterized by H to N peaks; 

however a BCG signal is generally affected by noise such 

as respiratory, movement artifacts and hardware 

limitation. Few studies [5] focus on pediatric 

ballistocardiography, where BCG signals are noisier. 

Compared to adults, the BCG signal amplitude of a 3kg 

infant is about 30 times lower due to low weight and low 

cardiac contractile force [6].  

Specific digital signal processing algorithms have been 

developed for detecting heartbeats, beat-to-beat heart rate 

and heart rate variability (HRV) in BCG signals using 

time domain or time-frequency domain methods [7]. In 

template matching methods, heartbeats’ shape is 

manually [8,9] or automatically [10] modeled and cross-

correlated to the signal. However the cross-correlation 

function may be difficult to threshold because of 

amplitude and time variability of the IJK complex.  

 In this context, we present a new method to detect 

heartbeats based on a template matching algorithm 

improved by DTW and heartbeat normalization. The 

resulting detection is robust to noise and heartbeats 

variability. The remaining of this paper is organized as 

follows: Section 2 presents the materials and Section 3 

details the proposed method before results in Section 4. 

Finally, Section 5 concludes this study. 
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2. Materials 

 A MM0 3000 medical bed has been equipped with a 

Murata SCA11H BCG sensor. The sensor is placed on 

top of a MMO Aerospacer overlay in a head-to-foot 

direction as shown in Figure 1. This wireless sensor is 

based on a SCA61T accelerometer with a 150 µm/s
2
/√Hz  

low noise density. The analogue output is AC coupled, 

anti-aliasing filtered and amplified before digitization at 1 

kHz.  

 The digital signal is filtered with third order 

Butterworth filters, specifically a 25 Hz low-pass filter 

and a 2 Hz high-pass filter. They are applied forward and 

backward in order to prevent phase distortion. Lastly, the 

signal is decimated to 200 Hz sampling frequency. 

 

 
Figure 1. Position of the BCG sensor. 

 

 Ten healthy adult volunteers were monitored for 20 to 

50 minutes-long naps during lunch break in Ecole 

Pratique des Hautes Etudes. This process has been 

validated by an ethical commission in conformity with 

the European data legislation. Volunteers were asked to 

lie down on the bed and rest in supine position.  

 

3. Methods 

 The ultimate goal of the methods is to accurately detect 

heartbeats in BCG, for heart rate and HRV analyses.  

 
Figure 2. Flowchart of the methods. 

 

 Prior to the detection algorithm, motion-free BCG 

signals were manually isolated. In this paper we focus on 

these signals. Figure 2 illustrates the methods. Final steps 

of template training and Signal-to-Noise (SNR) ratio 

estimation are detailed in Sections 3.5 and 3.6. 

3.1. Template initialization 

 In template matching methods, a template helps 

recognize similar patterns in the signal; it is often defined 

manually. In our case, a heartbeat template is 

automatically initialized for each participant in the 

following manner. An envelope detection algorithm based 

on a Hilbert transform is applied on the ten first motion-

free seconds of the BCG signal. Local minima, spaced by 

a minimum delay Δt depending on a hr estimate of the 

heart rate, are detected. The HRestimate equals 60 times 

the fundamental frequency of the BCG envelope’s Fast 

Fourier Transform. 

 Segments starting from one of these local minima to 

another one are very likely to include one heartbeat each 

and are thus called inter-beat intervals IBI. Global 

minima of IBIs are probably J peaks, as illustrated in 

Figure 2.  

 

 
Figure 3. BCG envelope detection and segmentation. 

 

 In Figure 3, IBIs are J peaks synchronized, z-score 

normalized and averaged altogether. Normalizing IBIs is 

necessary to preserve the shape of heartbeats and to 

overcome amplitude variability issues. The initial 

heartbeat template is parametrized by its length L and the 

J peak index iJ. 

 

 
Figure 4. Initialization of the template. 
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3.2. Heartbeat candidates selection 

 In order to recognize patterns similar to the initialized 

template, the BCG signal is sliced into L-long IBIs called 

heartbeat candidates. Local minima of the BCG signals 

are detected as potential J peaks of heartbeat candidates. 

Heartbeat candidates are IBIs shortened to L with J peak 

at index iJ. There are potentially about 25 heartbeat 

candidates per second because low-pass cut off frequency 

is 25 Hz; features like minimum distance between peaks 

or minimum height of peaks can help reduce the number 

of candidates.  

 

3.3. Dynamic Time Warping  

 Heartbeat candidates must be compared with the 

template in such a way that time variability issues are 

overcome. Dynamic Time Warping (DTW) is a method 

for measuring similarity between two time series which 

are globally or locally delayed. By aligning the sequences 

in time, DTW is independent of the non-linear time 

variability of the sequences. It is widely used for pattern 

recognition in time series. It has been used in BCG for 

evaluating the potential changes in the signal induced by 

different respiratory patterns and posture [11].  

 Optimization, in terms of normalization, endpoints 

weighting and warping constraint has been performed 

[12]. Firstly, the initial template and heartbeat candidates 

are z-score normalized and multiplied by a tapered cosine 

window in order to smooth endpoints and force a zero 

value. Secondly, the width of the warping path is 

constrained to 5 samples by a Sakoe-Chiba band, which 

corresponds to 25 ms local delays. In fact, as the 

maximum frequency of the signal is limited to 25 Hz, 

adjacent local minima are minimally spaced by 40 ms. If 

time warping were longer than this delay, heartbeat 

candidates might be confounded.  

 

3.4. Heartbeat detection 

 Heartbeat candidates are sorted in a buffer by their 

DTW distance with the template. Starting from the 

smallest DTW distance, heartbeats candidates are 

discarded from the buffer as soon as they are closer in 

time than Δt to a heartbeat candidate with smaller DTW 

distance.  

 Beat-to-beat delays, heart rate series and HRV are 

computed from J peak position of the remaining heartbeat 

candidates.  

 

3.5. Template training  

 The initial template is an average of IBIs synchronized 

with their probable J peaks for the ten first seconds. Its 

shape may differ from actual heartbeats, consequently the 

template must be refined. In the template training step, 

IBIs are updated with the new detected J peaks and the 

trained template is the average of IBIs synchronized with 

these J peaks. The previous steps of optimization, DTW 

execution and heartbeat detection are then iterated to 

make sure that no false positive or false negative occurred 

when the template differed from actual heartbeats. 

Iterations are executed until the template converges (two 

iterations are generally enough for a ten-second-long 

BCG signal). An example is given in Figure 4. 

 

 
Figure 5. Refinement of the template. 

 

3.6. Signal-to-noise ratio estimation 

 Noisy conditions must be quantified to check the 

algorithm performance. SNR estimation was estimated 

for each motion-free BCG signal as the average sample 

correlation coefficient between pairs of sequential 

heartbeats [13].  

4. Results 

The DTW template matching algorithm presented in 

this paper has been tested on the BCG database described 

in 2.2. A medical expert manually checked every 

heartbeat using a dedicated data visualization software. A 

detected heartbeat is classified as a true positive only if its 

J peak is at the same location of the J peak of a real 

heartbeat. Over all records (M = 14139 real heartbeats), 

false positives (FP), true positives (TP) and false 

negatives (FN) are reported in Table 1. Specificity was 

not computed because true negatives are ill-defined. 

 

Table 1. Truth table for detection of heartbeats. 

 

M = 14139 Heartbeat No heartbeat 

Detected  TP = 13523 FP = 433 

Undetected FN = 616  

 

 Overall sensitivity and positive predictivity are 95.6 % 

and 96.8 % respectively, with records’ SNR ranging from 
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2.0 to 14.6. If we separate records whose SNR are lower 

than 3 (four records) from those higher than 3 (six 

records), sensitivity and positive predictivity will be 

85.3% and 88.5% in the noisiest case; 98.7 % and 99.2 % 

in the second case.  

 

5. Discussion 

 We presented a template matching method for 

automatically detecting and determining the shape of 

heartbeats in BCG signals, which solves amplitude and 

time variability issues by dynamic time warping and 

normalization. This algorithm was successfully tested on 

a database with varying conditions of noise.  

 Synchronized gold standard physiological 

measurements such as ECG were missing, so detected 

heartbeats were checked manually. This process is 

tedious especially in noisy conditions where it is difficult 

to manually label heartbeats. Moreover, the heartbeat 

detection step of the algorithm forces a minimum delay 

between two consecutive heartbeats based on an 

estimation of the average heart rate. This strong 

assumption might be locally refined using Short-Term 

Fourier Transform depending on the length of the signal. 

In addition as heartbeats are selected by their ascending 

DTW distance with the template, one badly labeled 

heartbeat often leads to multiple false positives in its 

neighborhood; this issue could be solved by adding 

features for the heartbeat detection step.  

The adult BCG database, realized in noisy ecological 

conditions, served as a proof of concept for this 

algorithm, which will be further tested on infants and 

neonates BCG databases during experimentations in 

Raymond Poincaré Hospital – APHP in Garches, France. 

The presented algorithm enables the possibility to detect 

heartbeats in BCG signals recorded by usual industrial 

MEMS sensors that are noisier but far less expensive. 
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