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Abstract

Several autonomic markers were estimated overnight
and during exercise and head-up tilt (HUT) testing for 44
BS patients, to design classifiers capable of distinguishing
patients at different levels of risk. The classification per-
formance of predictive models built from the optimization
of a step-based machine-learning method were compared,
so as to identify those autonomic protocols and mark-
ers best distinguishing between symptomatic and asymp-
tomatic patients. Although exercise and HUT testing to-
gether led to better predictive results than when they were
separately assessed, among all analyzed combinations,
the night-based classifier presented the best performance
(AUC = 95%), using the least amount of features. This
optimal features subset was mostly composed of markers
extracted between 4 a.m. - 5 a.m. Thus, results provide
further evidence for the role of nighttime analysis, mainly
during the last hours of sleep, for risk stratification in BS.

1. Introduction

Brugada syndrome (BS) is a genetic arrhythmogenic
disorder presenting an abnormal pattern on the electrocar-
diogram (ECG), characterized by a distinctive ST-segment
elevation in right precordial leads; associated with a high
risk for sudden cardiac death (SCD) due to ventricular fib-
rillation (VF) in absence of structural cardiopathies [1].

After diagnosis, implantable cardioverter defibrillators
(ICD) are the only proven effective treatment thus far
and current guidelines recommend an ICD implantation in
symptomatic BS patients [1]. However, it is difficult to
perform an appropriate BS patient selection for device im-
plantation when no symptoms are documented, since i) this
population shows a relative low risk of cardiac events (esti-
mated at less than 1% [2]) and ii) ICD implantation can be
associated with complications related to surgery and inap-
propriate shocks. Thus, risk stratification to determine the

best therapeutic strategy remains challenging for asymp-
tomatic patients, who represent around 60% of diagnosed
patients.

Major cardiac events in BS patients most commonly
occur during periods of increased parasympathetic tone,
at rest or during sleep [3], and studies based on positron
emission tomography have demonstrated autonomic dys-
functions in this population [4]. Although previous studies
based on long-term spontaneous measurements have led to
inconclusive results [5–7], it has been hypothesized that
the application of controlled autonomic maneuvers may
improve reproducibility of the observed markers. Indeed,
some studies have already reported the interest of auto-
nomic evaluation during controlled exercise testing [8, 9],
among other autonomic tests [10], for the prediction of car-
diac events in BS.

In previous works, we reported significant differences in
the autonomic function of symptomatic and asymptomatic
BS patients overnight [7] and during exercise [11–13] and
head-up tilt (HUT) testing [14, 15]. In this paper, we fur-
ther explore the potential of heart rate variability (HRV)
markers for BS classification, by combining features ex-
tracted from these experimental conditions.

2. Materials and methods

2.1. Study population

The standard 12-lead ECG recordings from 44 patients
suffering from BS were collected for 24 hours, includ-
ing exercise and HUT tests. They were acquired during
a prospective, multicenter study, led by the Cardiology
department of the Rennes University Hospital (CHU de
Rennes), in France. Participants were enrolled in 6 French
hospitals located in Rennes, Saint Pierre de la Réunion,
Nantes, Bordeaux, Brest and La Rochelle. The study pro-
tocol was approved by the respective local ethics commit-
tees and all patients provided their written informed con-
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sent to participate in the study.
According to current international guidelines [1], BS

was diagnosed when a coved ST-segment elevation (≥ 0.2
mV) was observed in at least one right precordial lead
placed in the 2nd, 3rd or 4th intercostal space. Moreover,
patients were classified as symptomatic and asymptomatic,
based on their medical history, so as to characterize popu-
lations with different levels of risk.

Participant ages ranged from 19 to 73 years old (45.45 ±
12.78 years old) and 38 (86.5%) were males. Among these
44 patients, eleven had experienced symptoms of ventric-
ular origin (symptomatic group): syncope (72.7%), car-
diac arrest (18.2%) and, less frequently, palpitations and
nocturnal convulsions (9.1%). All these patients had been
implanted with an ICD. The rest of the population (33 pa-
tients) were labelled as asymptomatic. From these 33 pa-
tients, 10 had also been implanted (30.3%), following clin-
ical recommendations after a positive EPS (Electrophysio-
logical Study) test [1].

2.2. Study design

ECG signals were acquired with a Holter monitor (ELA
medical, Sorin Group, Le Plessis Robinsson, France), at a
sampling frequency of 1000 Hz. From the whole record-
ing, autonomic analysis was focused on three specific pe-
riods: 1) during exercise, 2) HUT testing and 3) overnight.

2.2.1. Exercise testing

Following the American Heart Association recommen-
dations [16], load was progressively augmented until the
patient reached 80% of his/her theoretical maximum heart
rate (MHR = 220 − age [17]). The test was performed
in a cyclo ergometer (Ergoline 900 Egamed, Piestany, Slo-
vakia) and divided in the following phases:
• Exercise phase: initial load of 50 W (30 W for women),
for 2 minutes (warm-up); followed by a load of 80 W (50
W for women) for 2 minutes and then incrementing 20 W
every 2 minutes (incremental exercise).
• Recovery phase: fixed load of 50 W (30 W for women),
for 3 minutes (active recovery); followed by a total cessa-
tion of effort for 3 minutes (passive recovery).

2.2.2. Head-up tilt testing

It was performed in the morning, in fasting conditions,
according to the following protocol:
• Baseline: 10 minutes in supine position.
• Tilting phase: 45 minutes at 60◦ of table (Sissel,
Sautron, France) inclination. All positive cases were ex-
cluded from the study.
• Post-tilt resting phase: 10 minutes in supine position.

2.2.3. Nighttime analysis

From the recorded 24 hours, the period from midnight
to 6 a.m. was identified. Then, nighttime analysis was
focused on the analysis of 6 consecutive 1-hour segments.

2.3. HRV features

From the 12-lead ECG signals acquired during each au-
tonomic test and during the night, RR-interval and R-peak
amplitude series were extracted by using a noise-robust
wavelet-based algorithm [18]. A cubic-spline interpola-
tion was then applied to these series, in order to obtain
uniformly sampled data at a rate of 4 Hz.

Then, based on our previously reported analyses on the
autonomic function of BS patients during A) exercise [11,
12], B) HUT testing [14] and C) sleep [7], several HRV
markers were calculated for each patient, to build a set of
candidate features to be used for classification purposes.

2.3.1. Exercise testing

Spectral non-stationary HRV markers were extracted by
means of a Smoothed Pseudo Wigner Ville distribution
(SPWVD) method, described in detail elsewhere [11], that
adapts frequency bands to respiratory information.

These markers were obtained from the averaged val-
ues of LF , LFnu, HF , HFnu and LF/HF for non-
overlapped 1-minute windows, including the warm-up
phase, the first 3 minutes and the last minute of exertion, as
well as the active and passive recovery periods. Moreover,
based on a previous study on heart rate complexity (HRC)
captured by power-law scaling analysis where significant
differences between symptomatic and asymptomatic BS
patients were noted [12], the β slopes measured during the
whole exercise and recovery phases were calculated.

2.3.2. Head-up tilt testing

For the design of classifiers based on HUT testing data,
the same HRV markers were extracted. In this case, the
mean for the whole baseline period was subtracted from
each estimated HRV time series and, in order to reduce
classification computational cost, only the first 5 minutes
after tilting and the time period between 11-15 minutes in
upright position were included, based on a previous study
[14], where the most significant autonomic differences be-
tween symptomatic and asymptomatic BS patients were
found before the 15th minute in upright position.

2.3.3. Nighttime analysis

According to a previously reported study on the auto-
nomic function of BS patients at night [7], classical tempo-
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ral and spectral, as well as non-linear, HRV markers were
calculated for each night hour.

2.4. Classification methodology

A 4-step machine-learning approach was applied to fea-
tures extracted from each experimental condition and to all
possible combinations of the available autonomic tests:
1. Feature extraction. The above-mentioned HRV fea-
tures were extracted for each patient. A matrix of can-
didate features RN

M , of size N × M , with N = 44 pa-
tients was estimated. Values of M depended on the se-
lected set of experimental conditions: exercise (M = 62);
HUT (M = 50); nighttime (M = 66); exercise and
HUT (M = 112); exercise and night (M = 128); HUT
and night (M = 116); and exercise, HUT and night
(M = 178).
2. Feature conditioning. To reduce the effect of mark-
ers measured at different scales and the impact of imbal-
anced groups of patients, a standardization followed by an
ADASYN-based class balancing method [19] was applied
to the ensemble of candidate features, leading to matrices
FN
M and FNb

M , respectively, where Nb > N refers to the
number of observations after class balancing.
3. Feature selection. Patient subsets were selected for
training (Ntr, 75% of samples) and testing (Nte, the rest).
Then, the minimal feature dimension Mw < M , maximiz-
ing classification performance, was estimated using a two-
step approach: 1) a filter method [20] discarding the 25%
least relevant markers and, 2) a wrapper method [21], opti-
mized based on the maximum AUC (area under the ROC
curve), selecting the final feature subset as those markers
appearing more than a specific number of times L.
4. Classification. Classifiers based on Linear Discrimi-
nant Analysis (LDA) were then designed to distinguish be-
tween symptomatic and asymptomatic populations, based
on features selected on the previous step. Finally, classifi-
cation performance was evaluated by measuring the AUC
and applying a 10-times 4-fold cross-validation. More-
over, the capability of developed classifiers on detecting
symptomatic and asymptomatic patients was quantified by
the classical sensitivity (Se) and specificity (Sp) measures.

3. Results

3.1. Single-test analysis

In a first phase, three single-test classifiers were sepa-
rately built with features extracted from each experimental
setup. Regarding exercise analysis, the best classifier was
designed when only those markers appearing more than
L = 18 times after wrapper feature selection were kept.
The final subset contained Mw= 31 features and led to an
AUC = 0.89±0.03, with a sensitivity of Se = 0.88±0.04

and a specificity of Sp = 0.74 ± 0.11. Although this pre-
dictive model did not reach the classifier performance re-
ported in our previous work (AUC=92% for Mw = 22
features) [11], probably because it was based on a re-
duced amount of observations for model training, the pro-
posed classification methodology demonstrated an accept-
able generalization capability, since it was consistent with
the previous study where the same optimal L was selected.

The optimal AUC for classifiers based on HUT testing
data was found for L = 12, leading to a final subset con-
taining Mw= 31 features with a performance of AUC =
0.88 ± 0.06, Se = 0.74 ± 0.08 and Sp = 0.86 ± 0.15.
Similar results were thus observed for the classifiers based
on exercise and HUT tests, with a slightly improved speci-
ficity at the expense of worsening sensitivity for the HUT-
based classifier. Since our priority was to correctly iden-
tify symptomatic BS patients and HUT-based classification
presented a lower sensitivity, exercise testing seemed to be
more suitable for high-risk BS patients identification.

Finally, the optimal AUC regarding nighttime analysis
was found for L = 15, leading to the best performance
among single-test classifiers (AUC = 0.95 ± 0.03, Se =
0.94± 0.08, Sp = 0.80± 0.12), using the least amount of
HRV features (Mw= 26).

3.2. Multi-test analysis

Table 1 summarizes the optimalAUC obtained for each
single- and multi-test classifier, together with their associ-
ated final dimensions (Mw).
Table 1. Mean and standard deviation of optimal AUC
values, and final dimensions, for all classifiers.

Classifier AUC Mw

Exercise 0.89± 0.03 31
HUT 0.88± 0.06 31
Night 0.95± 0.03 26
Exercise - HUT 0.91± 0.04 30
Exercise - Night 0.84± 0.08 26
HUT - Night 0.89± 0.04 23
Exercise - HUT - Night 0.92± 0.04 60

Based on the results, the predictive value of exercise
testing (AUC = 0.89 ± 0.03) increased by adding HUT
testing information (AUC = 0.91±0.04), and it was even
improved by including night data (AUC = 0.92 ± 0.04).
However, the best classification results were found when
nighttime was separately analyzed (AUC = 0.95± 0.03).

Among the 26 final features composing this optimal
night-based classifier, only one HRC marker was kept, ac-
quired between 4 a.m. - 5 a.m. The remaining parame-
ters mostly belong to temporal HRV measures, although 6
spectral features were also retained. Regarding analyzed
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hours, parameters were obtained along the whole night;
however, the time period including more features turned to
be 4 a.m - 5 a.m.

4. Conclusions

These findings provide further evidence for the rele-
vant role of autonomic response analysis during nighttime,
mostly during the last hours of sleep, to identify BS pa-
tients at high risk. The results concur with previous studies
reporting that most major cardiac events in BS occur at rest
and during the last hours of sleep, when parasympathetic
activity is predominant [3]. Moreover, as suggested by pre-
vious studies reporting alterations in the autonomic modu-
lation and heart rate variability and complexity of BS pa-
tients at higher risk [5–7], the proposed autonomic mark-
ers seem to unmask pathophysiological differences on pa-
tients at high risk that may be useful for risk stratification.
Since the proposed predictive model showed an improved
performance with respect to previous works in the field,
it is presented as a potential complementary instrument to
electrophysiological markers, so as to better identify those
asymptomatic patients at risk that may benefit from a de-
fibrillator implantation.
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