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Abstract 

QRS detection is a fundamental step in ECG analysis. 

Although there are many algorithms reporting results 

close to 100%, this problem is still not resolved. The 

reported numbers are influenced by the quality of the 

detector, the quality of annotations and also by the chosen 

method of testing. In this study, we proposed and properly 

tested robust QRS detection algorithm based on a 

combination of three independent principles. For 

enhancement of QRS complexes there were developed 

three independent approaches based on continuous 

wavelet transform, Stockwell transform and phasor 

transform which are followed by individual adaptive 

thresholding. Each method produces candidates for QRS 

complexes which are further processed by cluster analysis 

resulting in final QRS positions. The proposed detection 

algorithm was tested on three complete standard ECG 

databases: MIT-BIH Arrhythmia Database, European ST-

T Database and QT Database without any change in 

algorithm setting. We utilized complete data from 

mentioned databases including all provided leads and used 

original (not adjusted) reference positions of QRS 

complexes. Summarized detection accuracy for all three 

databases was expressed by sensitivity 99.16% and 

positive predictive value 98.99%. 

 

 

1. Introduction 

One of the first step towards the fully automated 

computer-based ECG analysis is detecting QRS complexes 

which are the most visible and also the most informative 

part of ECG record. Positions of subsequent QRS 

complexes bring valuable information about heart rate and 

its variability and serve as an important feature for 

revealing heart diseases. 

Even though the scientific community has been 

focusing on this issue for several decades, the issue of QRS 

detection is still a living and open topic, as evidenced by a 

number of publications in recent years [1,2]. Detection is 

often complicated by different morphology of QRS 

complexes (and thus different frequency content) in 

different subjects or in other leads of the same subject. 

Another complication can be additive interference from 

both internal and external environments. Internal 

influences include mainly muscle and respiratory activity 

or also changes in morphology caused by heart 

abnormalities. External influences include, for example, 

powerline interference or impulse interference caused by 

surrounding electrical devices. Many authors, despite these 

facts, report the accuracy of detectors to be close to 100% 

limit. The most successful being those based on time-

frequency decomposition, e.g. wavelet transform or 

Stockwell transform.  

The weak point is the way of testing. Under the ideal 

conditions, testing of algorithms should be held 

independently of the development of algorithms and under 

the same conditions for all authors. This means i) on the 

same and secret dataset, ii) the data must be precisely 

annotated, iii) the algorithm for evaluating the accuracy of 

the detector must have precisely and reasonably selected 

parameters (e.g., a tolerance window for successful 

detection or solution of boundary conditions). 

Unfortunately, unequal conditions in evaluating the 

accuracy of QRS detectors between different authors cause 

incomparability of the achieved results. This is especially 

true when the achieved results differ by only a tenth of a 

percent. 

 

2. Materials and methods 

The following chapters describe proposed algorithms 

for QRS complex detection and used dataset for 

development and evaluation in this study. 

 

2.1. ECG databases 

For evaluation of proposed QRS detector, three most 

frequent standard databases were used in this study: MIT-

BIH Arrhythmia Database (MITDB) [3], European ST-T 

Database (EDB) [4] and QT Database (QTDB) [5]. All 

databases are publicly available on PhysioNet [6]. 

Altogether, these databases involve 440 unique signals 

with duration of 449 hours and almost 2 million beats. 
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MIT-BIH Arrhythmia Database 

It contains 48 half-hour excerpts of two-channel ECG 

recordings obtained from 47 subjects. Many records in the 

MITDB demonstrate cardiac rhythm disorders, significant 

noise artefacts, and contain a broad variety of QRS 

morphologies. Sampling frequency of the database is 360 

Hz and 11 bit resolution covers a 10 mV range. It contains 

109494 annotated beats in each channel. 

 

European ST-T Database 

Database consists of 90 two hours excerpts of two-

channel ECG recordings from 79 subjects. EDB focuses on 

abnormalities in the ST segment including baseline ST 

segment displacement. Thanks to QRS complex 

annotations can be also used for QRS detectors testing. 

Sampling frequency of the database is 250 Hz and 12 bit 

resolution covers 20 mV input range. It contains 790565 

annotated beats in each channel. 

 

QT Database 

QTDB consists of 105 ECG recordings in two channels 

with duration of 15 minutes. Database represent a wide 

variety of QRS and ST-T morphologies. Sampling 

frequency of the database is 250 Hz. Complete annotations 

of QRS complexes have only 82 recordings thus it contains 

86995 annotated beats in each channel suitable for QRS 

detectors testing. 

 

2.2. QRS detection algorithms 

Designed QRS detector is based on three independent 

methods: continuous wavelet transform, Stockwell 

transform and phasor transform. These methods produce 

candidates for QRS complexes which subsequently inputs 

cluster analysis. 

The continuous wavelet transform based method uses 

wavelet “bior1.5” and scale 15 to highlight QRS 

complexes [7]. The thresholding is done in sliding window 

with duration of 2 seconds. The threshold is derived from 

standard deviation within the window by multiplying it by 

constant 1.73. 

The second approach of QRS complex enhancement is 

based on the time-frequency analysis using Stockwell 

transform and calculation of Shannon energy envelope 

within the range from 5 to 20 Hz as in [8]. The subsequent 

thresholding is adaptive. Initially set as 0.375 times median 

of the last three QRS complexes amplitudes within the 

envelope signal. Later, the threshold is adapted by 

exponential decreasing driven by the distance from last 

detected position. 

The third approach is based on enhancement of ECG 

waves by phasor transform [9]. Subsequently, a sliding 

window with 300 milliseconds duration is applied for the 

phasor signal and the maxima is searched for. As a next 

step it is checked, whether the maxima are higher than the 

adaptive threshold, which is set as 2 times of standard 

deviation of phasor signal calculated in a sliding window 

of 2 seconds duration. 

 

2.3. Cluster analysis 

Cluster analysis is applied on candidates for QRS 

complexes provided by all three described methods. 

Cluster is defined as the group of candidates which are not 

distanced more than 100 milliseconds. In ideal situation 

there are three values (candidates) in one cluster. In this 

case, the final QRS position is calculated as median within 

the cluster and considered as true positive (TP) QRS 

detection. If there are only two candidates, the final QRS 

position is calculated as the mean of both values. This case 

indicates possible missing candidate of one of the 

detectors. This procedure prevent false negative (FN) QRS 

detections. The clusters with only one value are considered 

as a false positive (FP) QRS detection and excluded to be 

QRS complex. 

The advantage is that all methods have a different 

principle and therefore tend to make mistakes in different 

part of signal. This gives a chance to cluster analysis to 

eliminate some FN or FP types of errors. 

 

3. Results 

Proposed QRS detector was evaluated by reached 

sensitivity (Se) and positive predictivity (PP) according to   
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which is standard evaluation metric for QRS detectors in 

many articles. Detected location is identified as TP when 

there is a reference position within the 100 milliseconds 

tolerance window. We consider such a tolerance window 

to be the longest possible and still physiologically 

justifiable because the average width of a normal QRS 

complex is around 100 milliseconds. Prior to testing, all 

three sub-algorithms were optimized on the first lead of the 

MITDB. For subsequent testing on other data, parameters 

remained unchanged. Results can be seen in Table 1.  

 

Table 1. Detection accuracy.  

 

DBs Lead TP FN FP 
Se 

[%] 

PP 

[%] 

MITDB 
1 109274 220 84 99.80 99.92 

2 106471 3023 3048 97.24 97.22 

EDB 
1 785269 5296 5406 99.33 99.32 

2 783146 7419 10501 99.06 98.68 

QTDB 
1 86745 250 260 99.71 99.70 

2 86638 357 749 99.59 99.14 

Total 1957543 16565 20048 99.16 98.99 
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As expected, the best results are achieved at the MITDB 

first lead. However, on other databases, the results are 

comparable, which proves that the sub-algorithms have not 

been overtrained. On the contrary, the worst results were 

achieved at the second lead of MITDB, which is more 

influences by interference. 

 

4. Discussion 

The proposed detector failed in about 40 thousand cases 

out of the total number of almost 2 million beats. This give 

an error rate about 2%. By careful searching were 

identified three main types of errors: 

 

Detector failure 

Of course, no detector can work without failure. The 

most detector failures are caused by unexpected sudden 

changes in the signal. In our case are the most frequent 

failures caused by noise (see Figure 1, upper part) and 

changes in heart beats, where the QRS complex have a 

different morphology and frequency content (see Figure 1, 

bottom part). 

 

 
Figure 1. Detector failure. Top: 2nd lead of record 104, 

MITDB. Bottom: 1st lead of record 203, MITDB. 

 

Incorrect references 

There were discovered many cases where the reference 

position is placed outside of QRS complex as we can see 

in the Figure 2. If we want to be successful (as many others 

are) in detection of QRS complexes in these particular 

signals, we have two possibilities: a) we can extend the 

tolerance window; b) we can manipulate with reference 

positions. The first possibility is inappropriate because, as 

explained above, the tolerance window we use is already 

long enough and further expansion would not be 

physiologically justifiable. The second option is even less 

suitable. Only the author of the database can afford to 

manipulate the data. If everyone adjusts the data according 

to their judgment, the results will no longer be comparable 

between the authors.  

This issue is not marginal. One bad reference position 

actually causes pair of mistakes (one FP and one FN) as 

evident in Figure 2. As an example, if we move the 

references to their correct positions at EDB and retest the 

proposed detector on the first channel, the total number of 

errors (FP + FN) will be more than half lower (decreases 

from 10702 to 4374) and Se together with PP will increase 

by 0.4 %.  

 

 
Figure 2. Incorrect references. Top: 1st lead of record 

e0129, EDB. Bottom: 1st lead of record e0614, EDB. 

 

Boundary conditions 

For some signals that started or ended at the moment of 

occurrence of the QRS complex, we found missing or 

remaining references.  

 

 
Figure 3. Boundary conditions. Top: 2nd lead of record 

sele0203, QTDB.  Bottom: 1st lead of record sele0122, 

QTDB. 

 

At the top of the Figure 3 can be seen ECG record 

starting in the middle of QRS complex. Proposed detector 

found this position but was penalized because there was 
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not reference position. The opposite situation can be seen 

at the bottom of Figure 3. Just before the end of the signal, 

the reference position of the QRS complex occurs. The 

record is truncated closely before QRS complex. The 

proposed detector logically could not find this QRS 

complex and was penalized for it. 

In our opinion, the protection zone should be 

determined at the beginning and at the end of each signal, 

where the tested detector would not be penalized. 

 

5. Conclusion 

QRS detection algorithm based on three independent 

principles is proposed and tested in this study. The 

efficiency of the detector is verified on three complete 

databases with almost 2 million beats. Sufficient 

robustness of the proposed solution was demonstrated. 

The achieved results depend not only on the quality of 

the proposed algorithm but also on the selected test data, 

the quality of references and testing parameters. Until the 

method of testing is unified on one standard, it will not be 

possible to sufficiently compare the quality of the 

algorithms among different studies. 
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