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Abstract

Since common electrocardiography (ECG) diagnostics
approaches are time-consuming and arrhythmia-type sen-
sitive, deep-learning methods are state-of-the-art for their
detection accuracy. However, premature ventricular con-
tractions’ (PVC) localization via common deep-learning
approaches requires large training set, therefore Multiple
Instance Learning (MIL) framework was applied, where
model is trained from whole-signal annotations. Proposed
MIL framework is based on 1D Convolutional Neural Net-
work (CNN), with global max-pooling in the last layer. The
detection of PVCs’ positions was done by the peak detector
with specified parameters – threshold, minimal distance
and peak prominence. Our method was tested on database
containing 1590 ECGs, including 672 signals with PVCs.
Dice coefficient reaches 0.947. This simple deep-learning
method for the localization of PVC achieves a promising
performance while being trainable from the whole-signal
annotations instead of positional labels.

1. Introduction

Premature ventricular contraction (PVC) is one of the
commonly diagnosed arrhythmias. In the last decade, mul-
tiple approaches were applied on PVC detection in ECG
signal. One of the most intuitive PVC detectors are those
based on the decision rules, where the rhythm and morpho-
logical features are calculated from the beats and PVCs are
identified by the feature assessment [1]. Another simple
method is a template matching, where a set of appropriate
beat’s templates is required. Malek et al. in their study
describe an improved template matching combined with
QRS features analysis and assessment of several different
correlation coefficients [2]. Gordon et al. use a sofisticated
deep learning technique - convolutional autoencoder - for
automatic feature extraction and simple random forest for
final detection of PVC beats [3]. Contrary to aforemen-
tioned approaches, no manually defined features nor selec-

tion of the most appropriate features are needed.
Since common diagnostics approaches are time-

consuming and arrhythmia-type sensitive, deep-learning
methods are state-of-the-art for their detection accuracy,
which can even surpass qualified medical experts. How-
ever, PVCs localization via common deep-learning ap-
proaches requires large training set including detailed
PVCs annotation. Here we present model which has no
such limitation. It localizes PVCs based on the whole sig-
nal annotation (i.e. ECG signal with/without PVC(s)). For
this weakly-supervised training, Multiple Instance Learn-
ing (MIL) framework was applied. MIL in combination
with deep learning was previously used for e.g. retinal im-
age quality estimation in [4]. Proposed MIL framework is
based on 1D Convolutional Neural Network (CNN) trained
with global annotations with no PVC nor normal QRS po-
sitions required.

2. Methods

The presented PVC detection method consists of
three main steps: 1) ECG signal classification (ECG
with/without PVCs) based on global annotation, 2) MIL
based feature signal calculation, 3) PVC complexes local-
ization using peak-detection via MIL feature signal align-
ment.

2.1. ECG data-set

Publically available ECG database from China Physio-
logical Signal Challenge 2018 (CPSC2018) [5] was used.
In this database, only whole-signal annotations are avail-
able. From original database, only signals labeled as Nor-
mal or PVC were used. The data-set contains 1590 ECGs
altogether, out of which 672 are labeled as signal with
PVCs. To test the proposed PVC detector, we labeled posi-
tion of PVCs manually. The data-set was split into training
and testing subsets in 8:2 ratio. ECGs were divided by the
standard deviation from the training dataset.
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2.2. Classification network architecture

For MIL framework, CNN architecture was applied.
Proposed architecture based on a residual neural network
(ResNet) [6], which has been modified form image to sig-
nal processing by replacing all 2D operation by its 1D
equivalents. Network architecture is depicted on Figure
1.
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Figure 1: Architecture of proposed model. Conv(3, i×12) - convolution
layer with filter size 3 and i× 12 filters; MaxPool(2, 2) - max pooling
with filter size 2 and stride 2.

2.3. MIL framework

By processing input ECG via several convolutional and
pooling layers, subsampled MIL feature signal (position
likelihood) of a variable length (bag of instances) is ob-
tained and is projected to a single output label by global
max-pooling followed by standard weighted cross-entropy
loss (WCE). The MIL feature signal pi (output of sigmoid
activation function) indicates, whether and how much this
part of ECG contributed to final prediction. MIL WCE loss
is:

WCEMIL = wpost log (max
i
pi)+

+ wneg(1− t) log (1−max
i
pi),

(1)

where t is a binary signal label, wpos and wnet are weights
for positive and negative class, respectively. More frequent
class has proportionally lower weight. Thus, high feature
values correspond to PVC area in ECG (see Figure 2). The
maps of PVC likelihood are further processed to get PVC
locations.

2.4. PVC localization

The detection of PVCs’ positions was done by the peak
detector with specified parameters – threshold, minimal
distance and peak prominence [7]. Optimal parameters’
settings were estimated via Python implementation [8] of
Bayesian Optimization [9]. The parameters’ optimisation
bounds were set to: minimum - maximum of all PVC like-
lihood maps; 0 - min-max range for peak prominence; 0 -
2 s for minimal peak distance.

2.5. Training details and implementation

The model was optimised with Adam optimizer (β1 =
0.9; β2 = 0.999) [10] with decoupled weight decay
regularization (λ = 10−5) [11]. Initial learning rate
was set to 0.001 and was multiplied by 0.1 every 50
epochs. Model was trained with weighted cross-entropy
loss, where weights are inversely proportional to frequency
of PVCs in the training dataset. The mini-batch size was
set to 32 and weights were initialised with Xavier initiali-
sation [12]. Data augmentation consisted of random mul-
tiplication by 0.3 of each lead, stretching the signals by 20
% and circular shifting of signal part. Zero-padding was
applied for signals to fit the batch size.

Code is available at: https://github.com/
PetraNovotna/MIL_based_PVC_localization.

3. Results

Correctness of PVC detection depends on the perfor-
mance of the classification model as well as precision of
peak detection in MIL feature signal. ECG classification
model reached accuracy on test dataset 0.961 and 0.967 for
average pooling and max pooling, respectively. The accu-
racy is comparable with the results of another recent stud-
ies with CNN classification (e.g. 0.979 [13], 0.979 [14]).

An example of MIL feature signal and detected PVC
locations can be seen in Figure 2. Yellow to red parts of
feature signal refer to ECG areas contributing significantly
to final PVC classification.

Results of PVC localization are summarized in Table
1. Both model configurations reached satisfactory results
when comparing with another reports regarding recall, pre-
cision and Dice coefficient. It should be noticed, that QRS
positions are not available for initial ECGs. In contrast to
previously published studies (Table 1), the QRS positions
are not required to train the presented model. Only PVC
positions were manually detected for test data. Therefore,
true negatives and, consequently, detection accuracy were
not calculated. Straightforward comparison of the meth-
ods is not possible since different databases (in terms of
size, ECG duration, acquisition setup, present pathologies)
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Figure 2: MIL feature signal and PVC beats detection. PVC position likelihood is represented by color scale, where green refers to uninteresting areas
and yellow-to-red parts refer to ECG areas contributing significantly to final PVC classification.

Table 1: Comparison of results with previously published approaches; * regarding test database; ** calculated as ratio of all accurately detected QRS
(available for classification of previously detected QRS complexes into two categories).

Author Data Method Rec Prec Dice Acc**
Lustgarten
[1]

ICM, Holter (PVC,Other) QRS features,
rule-based detection

0.744 to
0.752*

0.688 to
0.759*

0.715 to
0.755*

0.991 to
0.992*

Malek [2] MIT-BIH, INCART, QT,
Fantasia (PVC,Normal)

Template matching 0.809 to
0.939*

- - 0.979 to
0.998*

Gordon
[3]

MIT-BIH (PVC,Other) Autoencoder,
Random forest

0.865 0.623 0.724 0.878

Proposed CPSC2018 (PVC, Normal) MIL - avg-pool 0.865 0.890 0.877 -
Proposed CPSC2018 (PVC, Normal) MIL - max-pool 0.946 0.948 0.947 -

were used. Model with max pooling layer outperformed
that with average pooling layer by approx. 7 %.

4. Discussion and Conclusions

Our method was tested on database containing 1590
ECGs, including 672 signals with PVCs. Dice coefficient
reaches 0.947 for model with max pooling layer. The main
advantage of our method is in it’s potential applicability
on detection of various types of abnormalities without sig-
nificant, arrhythmia-specific, changes in model configura-
tion. This simple deep-learning method for the localiza-
tion of PVC achieves a promising performance while be-

ing trainable from the whole-signal annotations instead of
positional labels. Another benefit of the method is that
no previously detected QRS positions are required. From
practical point of view, MIL framework useful in reducing
the time needed for detailed ECG analysis and improved
the diagnostic process.
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