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Abstract

Background: End-stage renal disease (ESRD) patients
undergoing hemodyalisis therapy (HD) experience blood
potassium ([K+]) variations that are reflected on the T-
wave (TW) morphology. Methods: We evaluated the per-
formance of different lead space reduction (LSR) methods:
principal component analysis (PCA), maximising the TW
energy, and two derived versions of periodic component
analysis (πCA) named πCAB and πCAT, maximising the
QRST or TW beat periodicity. We applied these methods to
12-lead electrocardiogram (ECG) from 24 ESRD-HD pa-
tients. Then, we derived three markers of TW morphology
changes (duw, dw and d̂w,c), comparing an average TW de-
rived every 30 min with that at the HD end, from the PCA,
πCAB and πCAT based leads having the highest TW energy
content. Similarities between these three methods were as-
sessed by using Bland-Altman plots and the linear fitting
error (ε) evaluated from the 12th to the 44th h of ECG
recordings after the HD onset. Results: All series of duw,
dw and d̂w,c values showed good degree of mutual agree-
ment (median bias ≤ 0.5 ms) and a small deviation from
linearity in the [K+] increasing stage (median ε≤ 3.3 ms).
Conclusions: PCA and πCA can be used interchangeably
to track TW changes in ESRD-HD patients, in this type of
low noise contamination ECG recordings.

1. Introduction

Cardiovascular diseases are the major causes of morbid-
ity and mortality in end-stage renal disease (ESRD) pa-
tients undergoing hemodialysis (HD). In particular, varia-
tions in blood potassium concentration (∆[K+]), among
other effects, can alter the spatio-temporal ventricular re-

polarization sequence, reflected as T-wave (TW) morphol-
ogy changes on the electrocardiogram (ECG) [1], which
may set the stage for lethal cardiac arrhythmia. In a previ-
ous study [2], we investigated the ability of time-warping-
based markers of TW morphology changes [3] in monitor-
ing ∆[K+] in ESRD-HD patients. Three of these markers
showed the highest correlation with ∆[K+], duw (imple-
mented as proposed in [3]), dw (a signed version of duw),
and d̂w,c (a heart rate-corrected version of duw). In both
studies [2,3], principal component analysis (PCA) was ap-
plied to concentrate the TW energy across leads in one sin-
gle lead, the first principal component (PC1), assuming it
was the one with maximal TW energy.

In Monasterio et al. [4] periodic component analysis
(πCA), an eigenvalue-based transformation aiming to em-
phasise periodicity in multi-channel signals, was used as
an alternative to PCA to emphasise the alternant compo-
nent in TW corrupted by high noise contamination. The
study proved the superior performance of πCA as com-
pared to PCA for alternans detection. The objective of this
work is to compare the performance of PCA and πCA as
lead space reduction (LSR) step previous to time-warping
analysis for ∆[K+] monitoring in HD. In particular, the
πCA version proposed in [4] for TW alternans (periodicity
every two beats) analysis was here modified to study TW
morphology (periodicity every beat). Then, time-warping
was performed over the PCA- and πCA-transformed leads,
extracting and comparing duw, dw and d̂w,c series.

2. Study Population and Protocol

A standard, 12-lead, 48-hour ECG Holter record-
ing (H12+, Mortara Instruments, sampling frequency 1
kHz, amplitude resolution 3.75 µV), was recorded from
24 ESRD-HD patients at Hospital Clínico Universitario
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Figure 1: Panel (a) shows 8 independent leads from one of the patients. Each vertical solid line represents the starting point
of the window containing the samples used to build the eigenvectors in PCA (orange, denoting Ton), πCAB (blue, denoting
QRSon) and πCAT (green, denoting QRSon+130ms). The vertical red dashed line marks the end of the window (TW end).
The resulting PCs, πCBs and πCTs are depicted panel (b) to (d) respectively.

Lozano Blesa (Zaragoza, Spain) starting 5 minutes before
the HD session. The study protocol was approved by the
ethical committee (CEICA, ref. PI18/003) and all patients
signed informed consent.

3. Methods

ECG pre-processing: ECG pre-processing included
low-pass filtering (40 Hz cut-off) to remove muscular and
power-line noise and high-pass filtering (0.5 Hz cut-off) to
attenuate baseline wander. QRS complexes were detected
and delineated in each single lead using a wavelet-based
delineation method [5].

Lead Space Reduction: A transformation matrix Ψ
was estimated for each LSR method and then applied to
the 8 independent leads to obtain their corresponding trans-
formed leads (PCs or πCs).

Principal Component Analysis: The coefficients defin-
ing ΨPCA were obtained from the eigenvectors of the 8×8
inter-lead auto-correlation matrix computed using the sam-
ples in the TW defined from T-on to T-off (from orange
to red dashed line in Fig. 1(a)) [3] in a 10-min window
at the end of the HD session. As a result, PC1 was the
transformed lead that maximised the TW energy, as in
Fig. 1 (b).

Periodic Component Analysis: QRST complexes, de-
fined as a window of 450 ms from the QRS onset (blue

line in Fig. 1(a)), were taken from the above mentioned
10-min window for the transformation learning, resulting
in the πCBs (Fig. 1(b)). Alternatively, considering that the
QRS complex and TW, even both being one-beat periodic,
do not necessarily have the same spatial distribution, only
the TW area was considered to calculate the eigenvectors
using a window from the QRS onset plus 130 ms to 450 ms
(green to red dashed line in Fig. 1(a)), resulting in πCTs
(Fig. 1(d)). Let m = 1 be the one-beat periodicity, K the
number of heartbeats in the analysing window, N the num-
ber of samples in the selected beat interval, L the number
of leads and xk,l(n) the nth sample in the kth heartbeat for
a given lth lead. In vector notation each QRST complex, or
TW, was defined as xk,l = [xk,l(0) · · ·xk,l(N − 1)]

T. To
avoid extra variability due to the single-lead delineation,
a pre-alignment of the selected intervals in each lead was
performed by computing a reference QRST complex (or
TW) as the mean of all QRST complexes (or TW) in that
particular window. Then, cross-correlation was computed
between the reference and each QRST complex (or TW)
and these were shifted according to the lag of maximum
cross-correlation. For each heartbeat, all leads were put
together in the L×N matrix:

Xk = [xk,1 · · ·xk,L]T (1)

Two matrices X and X(m) were constructed by concate-
nating Xk from 1 to K and from 1+m to K +m, respec-
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tively:

X = [X1 · · ·XK ]
T
;X(m) = [X1+m · · ·XK+m]

T (2)

Then the spatial correlation matrices RX for X and AX(m)

for (X(m) −X) were computed as:

RX =
1

KN
XXT (3)

AX(m) =
1

KN
(X(m) −X)(X(m) −X)T (4)

Finally, ΨπCA was chosen as the generalised eigenvector
matrix of the pair (AX(m) ,RX) [4], with the eigenvec-
tors sorted according to the corresponding eigenvalues in
ascending order of magnitude, being πC1 the spatial direc-
tion in which periodic signal component is better seen.

Time-warping TW morphology quantification: For
each patient and transformation, all TW in the first and the
second transformed leads were delineated [5]. In the case
of PCA and πCT, the first component was chosen for anal-
ysis, since, by its construction, it always has the maximum
TW energy. However, for πCB, since QRS is included in
the transformation learning, there is no guarantee that the
TW is maximised in the first transformed lead. Therefore,
to select the πCB lead with the maximum TW energy, the
TW energy was computed in the first two πCBs in the learn-
ing 10-min window at the HD end-stage, and the one with
the maximum energy was chosen. Then, TW in the chosen
transformed leads were selected in a 2-min window cen-
tred on the 5th and 35th minute of each available hour and
used to compute a mean warped TW (MWTW) as in [3].
That window is narrow enough to allow the assumption of
stability in heart rate (HR) and [K+] levels. The MWTW
at the end of the HD was taken as the reference and the
morphology of each MWTWs was compared with respect
to it performing TW time-warping analysis as described
in [2, 3]. The resulting marker duw quantifies the level of
warping needed to optimally align two TW as:

duw =
1

Nr

Nr∑
n=1

|γ∗ (tr (n))− tr (n) | (5)

being γ∗(tr) the optimal warping function that min-
imises the amplitude difference between the square-root
slope function [6] of the reference MWTW fr(tr) =
[fr(tr(1)), ..., fr(tr(Nr))]

T and each available MWTW
fs(ts) = [fs(ts(1)), ..., fs(ts(Ns))]

T; with tr =
[tr(1), ..., tr(Nr)]

T and ts = [ts(1), ..., ts(Ns)]
T and Nr

and Ns are the total duration of tr and ts. The original
definition of duw [3] was modified [2] to allow the marker
to be signed, therefore distinguishing TW widening from
narrowing. The signed dw and its sign, sd, are:

dw =

(
sd
|sd|

)
1

Nr

Nr∑
n=1

|γ∗ (tr (n))− tr (n) | (6)

sd =
∑
n∈Nu

r

(γ∗ (tr (n))−tr (n))+
∑
n/∈Nu

r

(tr (n)−γ∗ (tr (n)))

(7)
with Nu

r being the set of TW up-slope samples. A pos-
itive sign means that the fs(ts) has to be widened to
fit the fr(tr) and vice-versa for a negative sign. Fi-
nally, to compensate for concomitant TW variations due
to HR, dw was modelled as the sum of two components:
dw = dw,c + dw,HR where dw,HR accounts for TW mor-
phology changes related to HR, and dw,c accounts for other
changes, including those related to ∆[K+]. To estimate
dw,c, we used the following correction formula, based on
a linear approximation used to account for the HR depen-
dency of the QT interval as in [7]:

d̂w,c = dw − ĉ(RRs − RRr) (8)

being d̂w,c the estimated dw,c, RRs and RRr are the mean
RR interval from the sth studied and the reference seg-
ments, respectively, and ĉ is estimated for each patient [2].
Marker dynamics evaluation: To assess the agreement
between LSR-specific marker, Bland-Altman (B-A) plots
evaluated for each patient and each pair of transformations
were used, extracting the bias and confidence limits (CL).
For every patient, a fitting error (ε) from a linear regression
between the 12th and 44th h after HD onset was computed
for each LSR-specific marker. This ε provides information
on the marker’s deviation from a gradual linear trend along
time, which could be related to the trend followed by [K+].

4. Results and Discussion

The average duration of the ECG recordings was 44
hours, not 48 as expected, mainly due to electrode detach-
ment or early battery exhaustion. πCB1 was chosen in 17
patients (71%) as the one with the maximum TW energy.
This would suggest that, for 29% of patients, the spatial
projection that maximises the QRST periodicity was not
the same that maximises the TW periodicity.
The evolution of the PCA- and πCA-based duw, along the
ECG recording is shown in Fig. 2 (a) and similar trends
were found also for dw and d̂w,c markers (not depicted). A
detailed view of the first 10 hours is also presented (me-
dian values only). In this specific interval, all the markers
show a V-shaped curve having the vertex at the end of the
HD (Fig. 2 (b)), similarly to the reported [K+]-recovery
curves [8, 9]. This highlights an interesting analogy that
needs to be further investigated.
Looking at the results in Table 1, the bias and CL were,
in median, consistently smaller when comparing PC with
πCT (-0.2≤ B-A bias ≤ 0.0 and 7.5≤ CL ≤9.3), and
in both cases smaller ε (being 1.8≤ ε ≤2.1 for PC and
2.0≤ ε ≤2.4 for πCT) than πCB. Results for B-A bias and
CL indicate that the agreement is similar between πCT and
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PCA. However, since PCA separates signal components
according to their variance, projecting the component with
the highest energy onto the first transformed lead could be
a limitation in highly noisy ECG recordings [4].
From the 10thh on, the abrupt changes of markers median
values gradually reduce, settling themselves to a trend that
could be qualified as linear. By assuming that, a small me-
dian ε for a given LSR technique would suggest that it re-
sulted in more coherent measurements across patients for a
specific marker. However, even if ε values in Table 1 may
indicate at PCA as the technique leading to the least scat-
tered markers, the median and IQR are very similar to each
other to definitively conclude which among PCA, πCT and
πCB was the most consistent in terms of measurements.

5. Conclusions

In this work, we tested the performance of πCA-based
and PCA LSR methods, by comparing three TW time-
warping based markers computed over long duration ECG
recordings from 24 ESRD-HD patients. Our results would
support the interchangeable usage of both PCA and πCA
as preprocessing steps to track TW morphology variations
during and after HD. Future studies under heavier noise
conditions will elucidate if πCT is preferred over πCB or
PCA, as shown in T wave alternans detection [4].

Table 1: Median bias and confidence limits, CL from B-A
plot and meadian ε/IQR evaluated across patients.

median{B-A bias}/CL (ms/ms) median{ε}/IQR (ms/ms)
PC-πCB PC-πCT πCB-πCT PC1 πCBs πCT

duw 0.0/11.2 0.0/7.5 0.3/9.2 1.8/1.8 2.4/2.0 2.0/1.3
dw 0.1/13.3 -0.1/9.5 -0.2/14.5 2.2/2.6 3.1/3.8 2.4/2.1
d̂w,c 0.5/12.8 -0.2/9.3 -0.3/14.2 2.1/1.7 3.3/3.4 2.2/2.0
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