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Abstract 

Atrial fibrillation (AF) is the most common arrhythmia 

in adults and is associated with a higher risk of heart 

failure or death. Here, we introduce simple and efficient 

method for automatic AF detection based on symbolic 

dynamics and Shannon entropy. This method comprises of 

three parts. Firstly, QRS complex detection is provided, 

than the raw RR sequence is transformed into a sequence 

of specific symbols and subsequently into a word sequence 

and finally, Shannon entropy of the word sequence is 

calculated. According to the value of Shannon entropy, it 

is decided, whether AF is present in the current cardiac 

beat. We achieved sensitivity Se=96.32% and specificity 

Sp=98.61% on MIT-BIH Atrial Fibrillation database, 

Se=91.30% and Sp=90.8% on MIT-BIH Arrhythmia 

database, Se=95.6% and Sp=80.27% for Long Term Atrial 

Fibrillation database and Se=93.04% and Sp=87.30% for 

CinC Challenge database 2020. The achieved results of 

our one-feature method are comparable with other authors 

of more complicated and computationally expensive 

methods. Our ECG experts found that public databases 

contain errors in annotations (in sense of AF). It means 

that results are affected by errors in annotations. Many 

errors were found in Long-Term AF database, several also 

in MIT-BIH AF database and MIT-BIH Arrhythmia 

database. Testing algorithms on poorly annotated 

databases cannot bring reliable results and algorithms 

useful in real medical practice. The examples of such 

annotations are reported in this study. 

 

1. Introduction 

Cardiovascular disorders are still the most common 

cause of death worldwide. Due to the ease of use, non-

invasiveness and cheapness, electrocardiogram (ECG) is 

nowadays still the most available and widely used method 

for the cardiovascular system examination [1]. Atrial 

fibrillation (AF) is the most common arrhythmia in adults 

and is associated with a higher risk of heart failure or death.  

AF is a supraventricular tachyarrhythmia which is 

represented by inconstant atrial activation and, therefore, 

dysregulation of atrial contractions. This cause 

uncompleted blood transfer from atria to ventricles and 

decrease the efficiency of heart functioning. This can result 

in serious complications such as ischemia, stroke, or early 

mortality [1]. Therefore, early detection of AF is crucial 

for effective treatment. Automatic detection of AF in ECG 

is still problematic, as was shown by the results of previous 

studies. Here, we introduce simple and efficient method for 

automatic AF detection based on symbolic dynamics and 

Shannon entropy. 

 

2. Method 

This method comprises of three parts. Firstly, QRS 

complex detection is provided by detector based on phasor 

transform, and sequence of RR intervals is computed. In 

the second part, the raw RR sequence is transformed into a 

sequence of specific symbols and subsequently into a word 

sequence. Finally, Shannon entropy of the word sequence 

is calculated. According to the value of Shannon entropy, 

it is decided, whether AF is present in the current cardiac 

beat.   

2.1. QRS complex detection 

Firstly, signal is filtered by bandpass filter with cut-off 

frequencies 12 and 19 Hz. In this frequency range lies the 

most of QRS complex energy. Using this filter suppresses 

P and T waves and also high frequency artifacts. On the 

other hand, QRS complexes are highlighted. 

After that, phasor transform (PT) is applied. PT 

transforms each sample of the signal into a complex value 

preserving the signal information [2].  

Converting each ECG sample into a phasor enhances 

changes in the ECG signal (the waves). The degree with 

which ECG waves are enhanced in phasor signal is 

determined by value RV. The value of RV is always within 

the interval 0-1. A constant value RV is considered as a real 

part, whereas the imaginary component is the original 

value of the ECG sample: 

 

𝑦(𝑛) = 𝑅𝑉 + 𝑗𝑥(𝑛),                                                                    (1) 

 

where y(n) is the phasorial signal and x(n) is the original 

sample of signal. The magnitude M(n) is computed as  

 

𝑀(𝑛) = √𝑅𝑉
2 + 𝑥(𝑛)2,                                                              (2) 

 

and phase (phasor) 𝜑(𝑛) is computed as 

 

𝜑(𝑛) = 𝑡𝑎𝑛−1 (
𝑥(𝑛)

𝑅𝑉
).                                                               (3) 
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In phasor signal 𝜑(𝑛), the QRS complexes have in all 

cases higher amplitude than the other ECG components. 

This applies also in a case of original ECG signals with 

smaller amplitude of QRS complex than T wave. Due to 

this fact, the QRS complexes in phasor signal are easier 

detectable [2].  

In the case of QRS detection, phasor transform of ECG 

signal with RV = 0.001 is performed. The example of 

phasor transform (grey curve) of ECG signal (black curve) 

prepared for QRS detection is in Fig. 1. Than we search for 

maxima in sliding window with 300 ms size. The next step 

is a check, whereas the found maxima are higher than used 

adaptive threshold. At the end it is checked, whether the 

interval between two subsequent QRS complexes (RR 

interval) is 1.75x higher than previous one. If it is 

accomplished, backward searching is performed. This 

detector was used and tested also in our previous studies 

[3], [4], [5]. 

The example of phasor transform of ECG signal is 

shown in Fig. 1. In phasor signal 𝜑(𝑛), the QRS complexes 

have in all cases higher amplitude than the other ECG 

components. This applies also in a case of original ECG 

signals with smaller amplitude of QRS complex than T.  

 

 
Figure 1 An example of (a) an original ECG signal; (b) phase 

signal φ(n); (c) detail of the top part of the phase signal 

(illustrated by red box in (b)), the green line represents the 

threshold for QRS detection. [3] 

2.2. Symbolic dynamic and Shannon entropy 

The purpose of using symbolic dynamics (symbols and 

words) is to describe the dynamic of heart rate. During 

atrial fibrillation, high variability of RR intervals is present 

and thus also high value of Shannon entropy [6]. 

 Firstly, heart rate hr(n) is derived from RR intervals 

(RR(n)). RR(n) are computed from length two consecutive 

heart beats (R(n)). The sequence of raw RR intervals is 

transformed into the heart rate (hr(n)) according to the eg. 

(4) and then quantified into symbol sequence (Sy(n)) [6] 

according to the equation (4) 

 

ℎ𝑟(𝑛) = 60/𝑅𝑅(𝑛),                                                                   (4) 

 

𝑆𝑦(𝑛) = {  63   𝑖𝑓 ℎ𝑟(𝑛) > 315 ⌊
ℎ𝑟(𝑛)

5
⌋              𝑜𝑡ℎ𝑒𝑟 ,                                    

(5) 

 

The sequence of symbols Sy(n) represent instantaneous 

state of heart rate transformed into the 64 possible symbols. 

To facilitate the analysis of Sy(n) is used 3-symbol 

template for examination of entropic properties of 

sequence.  This transformation is computed according to 

the eg. (6) and after that we obtain sequence of word 

(wv(n)) [7]. Each word takes into account 3 successive 

symbols (3 heart beats). 

 

𝑤𝑣(𝑛) = (𝑠𝑦(𝑛 − 2). 212) + (𝑠𝑦(𝑛 − 1). 26) +
𝑠𝑦(𝑛),                                                                             (6) 

 

Finally, Shannon entropy (SH) is computed (7). SH is a 

statistical tool that quantifies a time series (in our case 

length of heart beats) in terms of the information size [8]. 

At first, we define the discrete probability space of a 

dynamic system as A = (A|P). A represent set of 

characteristic elements A = {a1, · · · , ak}, and P = {p1, · · · 

, pk}(1≤ k ≤N) is relevant probability. Each element a(i) has 

probability p(i) = N(i)/N (0<p(i)<1,∑𝑘
𝑖=1 𝑝(𝑖) = 1 

where N is number of all element in A and N(i) is total 

number of element a(i) in A. Thus, the SH of A is defined 

as [26], 

 

𝑆𝐻(𝐴) = −
𝑘

𝑁.𝑙𝑜𝑔2
∑𝑘

𝑖=1 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖)                       (7) 

 

In our work, the dynamic system A consists of 95 

consecutive word elements from wv(n-47) to wv(n+47). 

The value of SH lies in interval <0,1>. It means that on 

computing of SH for R(n) is needed information of RR(n) 

of 95 consecutive heart beats. According to the value of SH 

is determined if atrial fibrillation is present or not in actual 

heart beats. In our work, we found that the best threshold 

the value for discrimination between AF and non AF is 

T=0.733. 

In Figure 2 process of classification is illustrated. 

Subgraph b) shows values of Shannon entropy transformed 

from length of RR intervals and also threshold (blue line) 

for decision of presence of atrial fibrillation (over line) or 

other rhythm (below line). It is clear visible that value of 

Shannon entropy correlated with annotation of atrial 

fibrillation c) (value 1 represents AF, value 0 represents no 

AF). 
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Figure 2 a) Length of RR intervals, b) Shannon entropy of RR 

intervals – blue line is treeshold for decision of presence AF, c) 

annnotation – value 1 represents AF, 0 represents nonAF 

3. Results 

We used four publicly available databases for testing of 

our algorithm. The results are summarized in Table 1. The 

exact values of true positive (TP), true negative (TN), false 

positive (FP), false negative (FN) are reported in Table 2.  

We achieved sensitivity Se=96.32% and specificity 

Sp=98.61% on MIT-BIH Atrial Fibrillation database, 

Se=91.30% and Sp=90.80% on MIT-BIH Arrhythmia 

database, Se=95.6% and Sp=80.27% for Long Term Atrial 

Fibrillation database and Se=93.04% and Sp=87.30% for 

CinC Challenge database 2020.  

 
Table 1 The performance of AF detection algorithm signals from MIT-

BIH arrhythmia database, MIT-BIH atrial fibrillation database, CinC 
chalange database (1sted) and Long term atrial fibrillation database (Se – 

sensitivity; PP – positive predictivity). 

Database SE [%] PP [%] 

MIT-BIH AF 96,32 98,61 

MIT-BIH AR 98,42 90,78 

CinC Ch. (1sted) 93,04 87,30 

Long Term AF 95,60 80,27 

 
Table 2 The values of true positive (TP), true negative (TN), false positive 

(FP), false negative (FN) heart beats of AF detection algorithm on signals 

from MIT-BIH arrhythmia database, MIT-BIH atrial fibrillation database, 

CinC chalange database (1sted) and Long term atrial fibrillation database. 

Database TP TN FP FN 

MIT-BIH AF 80964655 
12502921

5 
1764240 3093610 

MIT-BIH AR 2891746 23887217 2424716 46321 

CinC Ch. 1sted) 1145 4908 76 748 

Long Term AF 
43758987

2 

28439682

5 

6990500

3 

2014541

9 

 

The achieved results of our one-feature method are 

comparable with other authors of more complicated and 

computationally expensive methods [9], [10]. Fast a 

simplicity of our method is useful for example in 

application where the time is limitation and also for mobile 

devices, where the low computational complexity is 

important. Biosignals processing is nowadays an actual 

topic. 

In Figure 3, examples of errors caused by our detection 

algorithm, are shown. The blue lines indicate annotation 

from database, green lines indicate our results, value 1 

indicates AF, value 0 indicates nonAF. In a) is shown 

mistake caused by earlier termination AF of our detector – 

probably due to the fact, that SH is computed from 95 RR 

intervals and following RR intervals without AF decreased 

value of SH. These mistakes of inaccurate termination and 

beginning of AF is relatively frequent. In b) is shown that 

our detector pointed to the left part of the signal, where 

supraventricular arrhythmia is present, as atrial fibrillation, 

probably due to the fact of higher variability of RR 

intervals caused by this type of arrhythmia as with AF is 

also present. 

 

 
Figure 3 Examples of errors caused by our detection algorithm 

(blue line – annotation, green line - our result, 1-AF, 0-nonAF), 

a) signal 100 from Long term atrial fibrillation database, b) signal 

05261 from MIT-BIH atrial fibrillation database. 

4. Discutions 

During our work, our ECG experts made a very 

important finding. Public databases contain many errors in 

annotations (in sense of AF) and also in other pathologies. 

It means that results of all authors, who used these 

databases, are affected by errors in annotations. Many 

errors were found in Long-Term AF, several also in MIT-

BIH AF database and also in MIT-BIH Arrhythmia 

database. Testing algorithms on poorly annotated 

databases cannot bring reliable results and algorithms 
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useful in real medical practice. The examples of such 

annotations are reported in Figure 4. In the left part of 

subgraph a) is present AF, but in annotation from database 

(blue line) is not marked (signal no. 05261 from MIT-BIH 

atrial fibrillation database), correct annotation is marked 

by red line. In subgraph b) is present AF all the time, but 

according to the annotation is it not true. The part of the 

signal where the extrasystoles are, is not marked as AF. 

 
Figure 4 Examples of errors in annotation of AF (blue - 

annotation in database, red - correct annotation, , 1-AF, 0-

nonAF); a) signal 05261 from MIT-BIH atrial fibrillation 

database, b) signal 100 from Long term atrial fibrillation 

database. 

5. Conclusion 

In this work, highly efficient single feature algorithm 

for atrial fibrillation is proposed. The achieved results of 

our one-feature method are comparable with other authors 

of more complicated and computationally expensive 

methods [9], [10]. Fast a simplicity of our method is useful 

for example in application where the time is limitation and 

also for mobile devices, where the low computational 

complexity is important. 

In addition, our ECG experts found that in often used 

testing databases of ECG signals are errors in annotation 

(in sense of AF) and also in other pathologies. Testing 

algorithms on poorly annotated databases cannot bring 

reliable results and algorithms useful in real medical 

practice. There is a place for their correction or creation of 

new ones.  
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