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Abstract

Premature ventricular contraction (PVC) can induce
ventricular tachycardia or ventricular fibrillation. Drug-
resistant PVCs can be cured by catheter ablation, but the
accurate localization that this requires can be difficult and
time-consuming. An accurate pre-procedural estimate of
the origin could make the procedure more efficient.

We propose a machine-learning method for accurate
pre-procedural origin estimation. It uses a database of
paced 12-lead ECGs with known pacing locations and
presents its results on an imaging-based model of the pa-
tient. The method was tested using 7 realistic heart-torso
models with hundreds of PVCs everywhere in the ventri-
cles.

We found that increasing the number of patients in the
training database increased the accuracy of the predic-
tions. The optimal number of pacing sites per patient in
the training dataset was about 25, resulting in a prediction
error around 15 mm.

We conclude that our method gives a good indication
to clinicians to efficiently start a pace-mapping during a
catheter ablation procedure. It can be complemented with
an intra-procedural method that uses the patient’s own
paced beats to refine the prediction.

1. Introduction

Premature Ventricular Contraction (PVC) is a relatively
common event where the heartbeat is initiated in the ven-
tricles rather than by the sinoatrial node. Incidental PVCs
are usually harmless, but multiple PVCs can induce a ven-
tricular tachycardia or fibrillation.

To cure very frequent and drug-resistant PVCs, the site

of origin can be ablated with an endocardial catheter. We
previously proposed a patient-specific method to localize
PVC origin based on iterative pace mapping, using only a
12-lead ECG and no cardiac imaging [1]. However, this
method can only work during the intervention, because it
needs to be trained with stimulated beats. Cardiologists
are often interested in a pre-interventional estimate, and
often dispose of cardiac imaging performed before the pro-
cedure. To provide such an estimate we propose a machine
learning method, based on cardiac imaging and a database
of multiple patients.

Recent studies have used machine learning to classify
PVC origin by regions, but some work with very large re-
gions [2], are only applicable for endocardial origins [3], or
only for left ventricular origins [4]. Our proposed method,
in contrast, can predict origins in both ventricles and at any
depth, and can also predict 3D coordinates of origin, using
only the QRS complex of the 12-lead electrocardiogram
(ECG).

The method works as follows: cardiac imaging data are
used to create a 3D mesh of the ventricles of the patient.
We register this mesh to a reference bi-ventricular mesh.
In addition we use a database of 12-lead ECGs previously
recorded after pacing at known locations in multiple pa-

Patient LV endo LV epi RV endo RV epi All sites
#1 (M,44) 99 94 99 95 387
#2 (F,31) 99 88 99 97 383
#3 (F,20) 99 95 99 99 392
#4 (M,59) 99 95 99 98 391
#5 (F,15) 99 95 99 97 390
#6 (M,35) 99 92 99 96 386
#7 (M,44) 99 95 99 99 392
All patients 693 654 693 681 2721

Table 1. Number of paced beats by patient and tissue.
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tients, also registered to the reference mesh. Thus, using
features of the 12-lead ECGs and the corresponding origin
coordinates, we can train a model to predict the 3D coordi-
nates of a PVC origin on the reference mesh. The last step
is to translate the prediction to the patient’s own mesh.

In this study, we are interested in determining the impact
of the number of patients and pacing sites in the database
on the results.

2. Methods

2.1. Database

To construct the database, we used detailed anatomical
models of the heart and torso of 7 cardiac patients. These
models were previously created from computed tomogra-
phy data. Simulations were performed on 3-dimensional
computational meshes of normal ventricles with a uniform
edge length of 200 µm. The activation of the ventricles was
simulated with a monodomain reaction-diffusion equation
and the Ten Tusscher – Noble – Noble – Panfilov ionic
model [5]. The 12-lead ECG was computed using the lead-
fields method [6]. The simulations were performed with a
recent version of the propag-5 software [6, 7].

For each model, a few hundreds of paced beats were
simulated. Their origins were chosen randomly but well
distributed to cover all ventricular regions. The details of
the database are shown in Table 1.

2.2. Reference Mesh

For each patient, a 3D mesh of the ventricles was cre-
ated. The mesh of patient 1 was chosen as the reference
mesh. The other meshes and the pacing sites defined on
them were scaled to the reference mesh using the iterative
closest point method.

2.3. Machine Learning Algorithm

As an input of our machine learning algorithm, we used
the features proposed by Giffard-Roisin et al. [8]. For
each QRS complex, the following features were extracted:
1) QRS integral, 2) absolute potential of the global ex-
tremum, 3) timing of the global extremum, 4) sign of the
potential of the global extremum, 5) number of zero cross-
ing, 6) number of local extrema, 7) sign of the potential
of the first extremum. Thus, for each paced beat we had
12×7 = 84 features.

We chose the Gradient Boosting method, using the im-
plementation in the scikit-learn [9] package. We per-
formed 500 boosting stages, with a maximum depth of 5
for the trees. At each step, we considered only the square
root of the number of features when looking for the best

split, which was performed only if at least 1 % of the sam-
ples would be in the new nodes. The learning rate to shrink
the contribution of each tree was set to 0.05. A random
subsample of 80 % of the training dataset was selected
at each tree, so the method becomes Stochastic Gradient
Boosting.

To assess the effect of the mesh variability on the
database, we gradually increased the database by including
a new patient geometry at each step. We then had 6 cases:
In the first case we learned on simulations performed on a
single geometry, in the second case we used two geome-
tries, and so on. For each case, we evaluated prediction
errors. For the i-th case, we had Ci

6 possible combinations
to construct the learning database, built using i geometries.
For a given combination, we randomly chose 50 pacing
sites per patient, so the size of the database is i× 50 sim-
ulations. We then predicted the stimulation sites for the
remaining geometries. In order to avoid bias in the choice
of the stimulation sites, this step was repeated 100 times
and the error between the predicted sites and the real loca-
tion of the stimulation sites was computed.

In order to reduce the number of stimulation sites used in
the training phase, in the 6th case, we gradually decreased
the number of selected pacing sites per patient from 50 to
4, and we computed the corresponding prediction error.

3. Results

Fig. 1 shows the effect of geometric variability in the
database. The i-th bar group corresponds to the prediction
error in the i-th case described above. For instance, the
first bar group provides the mean and the standard devia-
tion (20.7± 9.5) of the prediction error when learning on
50 simulations performed on a single geometry, while the
last group provides the mean and the standard deviation
(14.8±7.1) of the prediction error when learning on 6 dif-
ferent geometries. The mean error of the prediction de-
creases as the number of patients in the database increases.

Fig. 2 shows the sensitivity of the method to different
numbers of pacing sites per patient in the training database.
The figure shows that the prediction decreases with in-
creasing number of pacing sites per patient in the train-
ing database. However, the improvement in the prediction
accuracy was negligeable when more than 30 pacing sites
were used.

4. Discussion

In this study, we proposed a machine learning method to
localize PVC origins, using the 12-lead ECG and cardiac
imaging data, before the clinical intervention.

For the preparation of an ablation procedure it is impor-
tant to know in advance in which ventricle the origin lies.
With 15 mm accuracy, our method will in most cases be
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Figure 1. Mean prediction error over the pacing sites of the considered patient as a function of the number of patients in
the training dataset.
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Figure 2. Fitted curves showing the mean prediction error over the pacing sites of the considered patient as a function of
the number of pacing per patient in the training dataset.
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able to indicate the correct ventricle, and if the prediction
is close to the interventricular septum the cardiologist will
be warned that access to both ventricles may be needed
during the procedure. Our results show that the accuracy
of the model can be improved by adding more patients to
the training database. It also shows that we don’t need
more than 30 pacing sites per patient in order to be effi-
cient, which is clinically feasible.

However, this method requires cardiac imaging, which
is not always available for catheter ablation of PVCs. Since
they are generated randomly, some pacing sites in the cur-
rent database cannot be reached by a catheter. This sug-
gests to construct a model that learns only on accessi-
ble pacing sites, which has not been done in the current
work. The current accuracy of the model, around 15 mm
of error, is not enough for direct ablation, but useful for
pre-interventional planning. Moreover, the method can be
complemented with an intra-procedural method that uses
the patient’s own paced beats to refine the prediction, as we
proposed in our previous work [1]. Also, this test was per-
formed with only 6 patients in the training database, and
our data suggest that additional patients can increase the
accuracy of the predictions. This method can already be
validated with cathlab data after procedure, by comparing
our predictions and the ablation sites.
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