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Abstract

The physical and paper Electrocardiography (ECG)
contain valuable insights into the history and diversity of
cardiovascular diseases (CVDs). The development of
algorithms that can digitize and classify these images
could significantly improve our understanding and
treatment of CVDs, particularly in underrepresented and
underserved populations. As part of the George B. Moody
PhysioNet Challenge 2024, we propose a deep learning
approach to digitize and classify ECG images. Our
methodology employs a deep learning segmentation model
to extract key components, which are then used to train a
classification model for the detection of CVDs and to
digitize the signal. Our team, BAPORLab, achieved a
signal-to-noise ratio of 5.493 placing 2nd in the
digitization task. In the classification task, we achieved a
macro F-measure of 0.730, ranked 3rd.

1. Introduction

The George B. Moody PhysioNet Challenge [1, 2]
presented a distinctive opportunity for research teams from
around the globe to develop algorithms with a focus on the
digitization and classification of electrocardiography
(ECG) images. The automation of analysis could result in
a more timely and accurate detection of major
cardiovascular diseases (CVDs), particularly in areas
where access to advanced diagnostic tools may be limited.
Furthermore, the digitization and classification of ECG
images could facilitate the broader usage of historical and
non-digital ECG data, thereby enhancing its accessibility
for clinical use and further research.

One of the key complexities in this field is the variability
in ECG image formats, especially when the data is sourced
from real-world, non-standardized environments. ECG
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images can manifest in a wide array of forms due to
differences in imaging techniques, which can lead to
variations in geometry, pixel intensity, and overall image
quality. This diversity poses a significant challenge for the
development of robust algorithms capable of processing
these images uniformly. Despite this, many existing
studies have relied on internal datasets, which do not fully
capture the variability present in real-world data. As a
result, models trained on these datasets may have difficulty
generalizing to more diverse and noisy real-world ECG
images.

In this study, we propose a method for extracting key
components—waveform, gridline, and text—from ECG
images. These components are then utilized for both
classification and digitization tasks. By leveraging this
approach, we achieved robust and accurate results using
generated datasets. This method not only enhances the
performance of ECG analysis but also demonstrates the
potential for effective data processing even when relying
on synthetic data.

2. Methods

In this section, we describe the detailed methodology
used in our study. The overall structure of the proposed
architecture is depicted in Figure 1, which provides a
comprehensive overview of the process.

2.1 Dataset

The PTB-XL database [3, 4] used for training contains
10-second, 12-lead ECGs with 21,799 clinical records
from 18,869 patients. Additionally, we used 62,734 ECG
recordings from the PhysioNet Challenge 2021 database [5,
6] and 46,729 ECG recordings from the MIMIC-IV
database [7] for pretraining the model.
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including the requisite preprocessing steps. These components are employed in the digitization and classification processes.

2.2.  Preprocessing

The generation of an undistorted basic ECG image,
along with its corresponding annotations, using the ECG-
Image-Kit [8, 9] tool is a critical prerequisite for the
creation of the masks required for training the
segmentation model. In our approach, we found that the
basic ECG image generated by the tool could be
deconstructed into distinct waveform, gridline, and text
channel masks. This separation was achieved through the
application of Hue, Saturation, Value transformation,
followed by a series of thresholding operations.

Upon closer examination, it was observed that the
waveform channel not only contained the primary ECG
signal but also included additional elements, such as
calibration markers and lead divider markers. It was
imperative that these superfluous components be removed
to prevent the introduction of noise into the waveform area.
To address this challenge, we employed the 'plotted_pixels'
data present in the annotations. The data proved invaluable
in plotting subsequent waveforms and identifying regions
of overlap with the waveform channel. As a result, a more
refined and precise waveform mask was generated, free
from the interference of non-essential markers. Finally, the
masks from the waveform, gridlines, and text channels
were combined into a 3-channel.

2.3 Deep learning model

A deep learning-based segmentation model is employed
to effectively differentiate between the principal
components of ECG images, we utilized pre-processed
masks as ground truth during training. The accurate
segmentation of components is of great importance, as it

enables the model to isolate and extract only the essential
information from the ECG data. The extracted information
is then employed in subsequent stages of the pipeline,
specifically in the classification model and the digitization
algorithm.

The segmentation model, which serves as the
foundation for the entire workflow, is constructed upon a
U-Net based encoder-decoder architectural framework.
This design is particularly well-suited for image
segmentation tasks, as it enables the model to efficiently
extract and capture intricate features through
dimensionality reduction, while also allowing for the
precise reconstruction of spatial information via up-
sampling. The encoder architecture  employed,
EfficientNet-BO [10], is responsible for progressively
reducing the dimensionality of the input data, thereby
distilling the salient features necessary for accurate
segmentation. In contrast, the decoder of U-Net is designed
to restore the original spatial dimensions, ensuring that the
output retains high levels of detail and precision.

In the classification task, we utilize a convolutional
neural network (CNN) model with the same architecture as
the encoder of the segmentation model. The waveform
channel extracted from the mask generated by the
segmentation model is fed to the model, ensuring that the
features segmented are directly utilized for multi-label
classification. Moreover, the same architecture between
the classification and segmentation models provides a
foundation for future research, such as developing end-to-
end models.

2.3.1 Data augmentation

Training with only basic ECG images presents a
challenge in reflecting the characteristics of various real-
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world data sets. To address this issue, we employed a range
of data augmentation techniques to better align the training
data with the characteristics of the hidden data sets. These
techniques were utilized with the objective of enhancing
the robustness and generalizability of our models by
simulating the variability observed in hidden data sets. To
enhance the robustness and generalizability of the
segmentation model, we employed a series of techniques,
including RGB value shifting, downscaling, and adding
noise. Furthermore, we applied a range of geometric
transformations, such as cropping, rotating, flipping,
perspective warping, and random tiling to both models.
These transformations facilitate the model's learning and
adaptation to various spatial distortions, enhancing
performance across diverse image data.

2.3.2 Experimental settings

We employed a set of hyperparameters and training
configurations to optimize the performance of our models.
The segmentation model was trained for 12 epochs with an
initial learning rate of 3e-4, while the classification model
was trained for 16 epochs with an initial learning rate of
5e-4. To ensure the generalization of results, both models
were validated through 4-fold cross validation.

Both models were trained using a batch size of 2, which
allowed for the effective management of memory
constraints while maintaining an optimal learning process.
For improving convergence, gradient accumulation
performed at 8-steps interval, which stabilized updates by
simulating a larger batch size without a notable increase in
computational resources.

2.3.3 Pretraining

To further enhance performance, we utilized external
datasets for pretraining and applying the same
preprocessing methods to ensure consistency. This strategy
allowed us to leverage pretrained weights, enabling the
segmentation model to achieve its target performance with
minimal additional training on the provided dataset,
thereby significantly reducing overall training time.
Additionally, the classification model exhibited an
approximate +0.05 improvement in cross validation score,
indicating a substantial boost in performance. This
approach not only accelerated the training process but also
enhanced the ability to generalize to diverse datasets. The
pretraining phase followed the configuration detailed in
Section 2.3.2. and the weights with the highest score were
fine-tuned using the training data.

2.4 Digitization algorithm

The digitization task is performed applying a rule-based
algorithm to the mask generated by the segmentation

model. This mask is a three-channel binarized image
containing waveform, gridline, and text information. The
algorithm is comprised of three principal stages.
Subsequently, short and long leads are identified,
rearranged and reconstructed to their original signal form.
Initially, the waveform region is detected and segmented
into long slices. Secondly, the signal range is calculated
from the gridline channel of the slices. Thirdly, the
waveform channel of slices is converted into a 1-
dimensional signal and normalized using the acquired
signal range.

Detecting waveform region: Once the waveform region
within the extracted mask has been identified, it can be
cropped as a slice for efficient post-processing. To achieve
this, the waveform channel mask is first skeletonized [11],
whereby the pixel thickness is converted to 1.
Subsequently, a kernel of size (height, 1) is used to perform
a left-to-right scan, whereby the sum of the intensity values
is listed and calculate the mode. The mode value serves as
an indicator of the number of waveforms and the position
of the listed value is indicative of the region in which the
waveform is situated. These indices enable the assignment
of height coordinates to waveforms by specifying the
intersection points, allowing the waveform to be extracted
in the form of slices. Furthermore, the utilization of
identical coordinates enables the simultaneous extraction
of the identical gridline and text areas.

Signal range estimation: ECG grid comprises two distinct
of lines: vertical lines representing time and horizontal
lines representing amplitude. Accordingly, the number of
horizontal lines can be used to estimate the amplitude
range of the signal. Algorithm [12] is employed to extract
horizontal lines from the gridline channel and skeletonize
in order to convert their thickness to 1. To reconnection of
disrupted lines, dilation algorithm [13] we used. The
number of horizontal lines, n, can be determined by mode
value after scanning left-to-right through the kernel of size
(height, 1) in a manner analogous to that employed in
detecting the waveform region. In an ECG image, the
typical value of a small grid box is 0.1 millivolt (mV).
Therefore, n is multiplied by 0.1 to determine the
maximum signal range r of the waveform.

Converting to signal: In the waveform channel of the slice,
the width is indicative of time, the height is representative
of the signal range. To transform the waveform channel of
slices into a one-dimensional signal, a scan is conducted on
each slice from left to right using a kernel of size (height,
1) During this process, the height indices where non-zero
values exist are listed, representing signal values. In the
absence of a non-zero value at any point, a NaN (Not a
Number) value is used. These NaN values are then
interpolated and reconstructed a digitized signal s. The
signal s is normalized to a range (0,7) using min-max
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scaling. Subsequently, the signal range is approximated as
an amplitude by subtracting the mean value of the
normalized signal s.

3. Results

As demonstrated in Table 1, the final challenge scores
and ranks achieved by our team for both classification and
segmentation tasks are presented.

Task Score Rank
Digitization SNR: 5.493 2/16
Classification | F-measure: 0.730 3/16
Table 1. The signal-to-noise ratio (SNR) and F-measure of
our team's model on the hidden data [14] for the
digitization and classification tasks.

4. Discussion and Conclusions

In this study, we proposed a method for extracting key
components to digitize and classify 12-lead ECG images.
The effectiveness of our approach is demonstrated by its
performance across both digitization and classification
tasks, which has practical implications. However, further
refinement is necessary in several areas. The classification
model employs an excessively large input data set,
necessitating supplementary sizing experiments to rectify
the inefficiency. Furthermore, the digitization algorithm
operates as a rule-based algorithm, rendering performance
susceptible to reductions when unexpected exceptions
occur.

In conclusion, our proposed method demonstrates
significant promise; however, there remains potential for
further  improvement, particularly in  reducing
computational costs and enhancing robustness to signal
variability. Future research should focus on optimizing the
classification input size and transitioning to a more
adaptive deep learning model for signal conversion in the
digitization algorithm.
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