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Abstract 

The physical and paper Electrocardiography (ECG) 

contain valuable insights into the history and diversity of 

cardiovascular diseases (CVDs). The development of 

algorithms that can digitize and classify these images 

could significantly improve our understanding and 

treatment of CVDs, particularly in underrepresented and 

underserved populations. As part of the George B. Moody 

PhysioNet Challenge 2024, we propose a deep learning 

approach to digitize and classify ECG images. Our 

methodology employs a deep learning segmentation model 

to extract key components, which are then used to train a 

classification model for the detection of CVDs and to 

digitize the signal. Our team, BAPORLab, achieved a 

signal-to-noise ratio of 5.493 placing 2nd in the 

digitization task. In the classification task, we achieved a 

macro F-measure of 0.730, ranked 3rd. 

 

1. Introduction 

The George B. Moody PhysioNet Challenge [1, 2] 

presented a distinctive opportunity for research teams from 

around the globe to develop algorithms with a focus on the 

digitization and classification of electrocardiography 

(ECG) images. The automation of analysis could result in 

a more timely and accurate detection of major 

cardiovascular diseases (CVDs), particularly in areas 

where access to advanced diagnostic tools may be limited. 

Furthermore, the digitization and classification of ECG 

images could facilitate the broader usage of historical and 

non-digital ECG data, thereby enhancing its accessibility 

for clinical use and further research. 

One of the key complexities in this field is the variability 

in ECG image formats, especially when the data is sourced 

from real-world, non-standardized environments. ECG 

images can manifest in a wide array of forms due to 

differences in imaging techniques, which can lead to 

variations in geometry, pixel intensity, and overall image 

quality. This diversity poses a significant challenge for the 

development of robust algorithms capable of processing 

these images uniformly. Despite this, many existing 

studies have relied on internal datasets, which do not fully 

capture the variability present in real-world data. As a 

result, models trained on these datasets may have difficulty 

generalizing to more diverse and noisy real-world ECG 

images. 

In this study, we propose a method for extracting key 

components—waveform, gridline, and text—from ECG 

images. These components are then utilized for both 

classification and digitization tasks. By leveraging this 

approach, we achieved robust and accurate results using 

generated datasets. This method not only enhances the 

performance of ECG analysis but also demonstrates the 

potential for effective data processing even when relying 

on synthetic data. 

 

2. Methods 

In this section, we describe the detailed methodology 

used in our study. The overall structure of the proposed 

architecture is depicted in Figure 1, which provides a 

comprehensive overview of the process. 

 

2.1 Dataset  

The PTB-XL database [3, 4] used for training contains 

10-second, 12-lead ECGs with 21,799 clinical records 

from 18,869 patients. Additionally, we used 62,734 ECG 

recordings from the PhysioNet Challenge 2021 database [5, 

6] and 46,729 ECG recordings from the MIMIC-IV 

database [7] for pretraining the model. 
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2.2. Preprocessing 

The generation of an undistorted basic ECG image, 

along with its corresponding annotations, using the ECG-

Image-Kit [8, 9] tool is a critical prerequisite for the 

creation of the masks required for training the 

segmentation model. In our approach, we found that the 

basic ECG image generated by the tool could be 

deconstructed into distinct waveform, gridline, and text 

channel masks. This separation was achieved through the 

application of Hue, Saturation, Value transformation, 

followed by a series of thresholding operations. 

Upon closer examination, it was observed that the 

waveform channel not only contained the primary ECG 

signal but also included additional elements, such as 

calibration markers and lead divider markers. It was 

imperative that these superfluous components be removed 

to prevent the introduction of noise into the waveform area. 

To address this challenge, we employed the 'plotted_pixels' 

data present in the annotations. The data proved invaluable 

in plotting subsequent waveforms and identifying regions 

of overlap with the waveform channel. As a result, a more 

refined and precise waveform mask was generated, free 

from the interference of non-essential markers. Finally, the 

masks from the waveform, gridlines, and text channels 

were combined into a 3-channel. 

 

2.3 Deep learning model 

A deep learning-based segmentation model is employed 

to effectively differentiate between the principal 

components of ECG images, we utilized pre-processed 

masks as ground truth during training. The accurate 

segmentation of components is of great importance, as it 

enables the model to isolate and extract only the essential 

information from the ECG data. The extracted information 

is then employed in subsequent stages of the pipeline, 

specifically in the classification model and the digitization 

algorithm. 

The segmentation model, which serves as the 

foundation for the entire workflow, is constructed upon a 

U-Net based encoder-decoder architectural framework. 

This design is particularly well-suited for image 

segmentation tasks, as it enables the model to efficiently 

extract and capture intricate features through 

dimensionality reduction, while also allowing for the 

precise reconstruction of spatial information via up-

sampling. The encoder architecture employed, 

EfficientNet-B0 [10], is responsible for progressively 

reducing the dimensionality of the input data, thereby 

distilling the salient features necessary for accurate 

segmentation. In contrast, the decoder of U-Net is designed 

to restore the original spatial dimensions, ensuring that the 

output retains high levels of detail and precision. 

In the classification task, we utilize a convolutional 

neural network (CNN) model with the same architecture as 

the encoder of the segmentation model. The waveform 

channel extracted from the mask generated by the 

segmentation model is fed to the model, ensuring that the 

features segmented are directly utilized for multi-label 

classification. Moreover, the same architecture between 

the classification and segmentation models provides a 

foundation for future research, such as developing end-to-

end models. 

 

2.3.1 Data augmentation 

Training with only basic ECG images presents a 

challenge in reflecting the characteristics of various real-

 
Figure 1. The methodology for extracting key components from generated ECG images using a segmentation model, 

including the requisite preprocessing steps. These components are employed in the digitization and classification processes. 
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world data sets. To address this issue, we employed a range 

of data augmentation techniques to better align the training 

data with the characteristics of the hidden data sets. These 

techniques were utilized with the objective of enhancing 

the robustness and generalizability of our models by 

simulating the variability observed in hidden data sets. To 

enhance the robustness and generalizability of the 

segmentation model, we employed a series of techniques, 

including RGB value shifting, downscaling, and adding 

noise. Furthermore, we applied a range of geometric 

transformations, such as cropping, rotating, flipping, 

perspective warping, and random tiling to both models. 

These transformations facilitate the model's learning and 

adaptation to various spatial distortions, enhancing 

performance across diverse image data. 

 

2.3.2 Experimental settings 

We employed a set of hyperparameters and training 

configurations to optimize the performance of our models. 

The segmentation model was trained for 12 epochs with an 

initial learning rate of 3e-4, while the classification model 

was trained for 16 epochs with an initial learning rate of 

5e-4. To ensure the generalization of results, both models 

were validated through 4-fold cross validation. 

Both models were trained using a batch size of 2, which 

allowed for the effective management of memory 

constraints while maintaining an optimal learning process. 

For improving convergence, gradient accumulation 

performed at 8-steps interval, which stabilized updates by 

simulating a larger batch size without a notable increase in 

computational resources. 

 

2.3.3  Pretraining 

To further enhance performance, we utilized external 

datasets for pretraining and applying the same 

preprocessing methods to ensure consistency. This strategy 

allowed us to leverage pretrained weights, enabling the 

segmentation model to achieve its target performance with 

minimal additional training on the provided dataset, 

thereby significantly reducing overall training time. 

Additionally, the classification model exhibited an 

approximate +0.05 improvement in cross validation score, 

indicating a substantial boost in performance. This 

approach not only accelerated the training process but also 

enhanced the ability to generalize to diverse datasets. The 

pretraining phase followed the configuration detailed in 

Section 2.3.2. and the weights with the highest score were 

fine-tuned using the training data. 

 

2.4 Digitization algorithm 

The digitization task is performed applying a rule-based 

algorithm to the mask generated by the segmentation 

model. This mask is a three-channel binarized image 

containing waveform, gridline, and text information. The 

algorithm is comprised of three principal stages. 

Subsequently, short and long leads are identified, 

rearranged and reconstructed to their original signal form. 

Initially, the waveform region is detected and segmented 

into long slices. Secondly, the signal range is calculated 

from the gridline channel of the slices. Thirdly, the 

waveform channel of slices is converted into a 1-

dimensional signal and normalized using the acquired 

signal range. 

 

Detecting waveform region: Once the waveform region 

within the extracted mask has been identified, it can be 

cropped as a slice for efficient post-processing. To achieve 

this, the waveform channel mask is first skeletonized [11], 

whereby the pixel thickness is converted to 1. 

Subsequently, a kernel of size (height, 1) is used to perform 

a left-to-right scan, whereby the sum of the intensity values 

is listed and calculate the mode. The mode value serves as 

an indicator of the number of waveforms and the position 

of the listed value is indicative of the region in which the 

waveform is situated. These indices enable the assignment 

of height coordinates to waveforms by specifying the 

intersection points, allowing the waveform to be extracted 

in the form of slices. Furthermore, the utilization of 

identical coordinates enables the simultaneous extraction 

of the identical gridline and text areas. 

 

Signal range estimation: ECG grid comprises two distinct 

of lines: vertical lines representing time and horizontal 

lines representing amplitude. Accordingly, the number of 

horizontal lines can be used to estimate the amplitude 

range of the signal. Algorithm [12] is employed to extract 

horizontal lines from the gridline channel and skeletonize 

in order to convert their thickness to 1. To reconnection of 

disrupted lines, dilation algorithm [13] we used. The 

number of horizontal lines, 𝑛, can be determined by mode 

value after scanning left-to-right through the kernel of size 

(height, 1) in a manner analogous to that employed in 

detecting the waveform region. In an ECG image, the 

typical value of a small grid box is 0.1 millivolt (𝑚𝑉). 

Therefore, 𝑛  is multiplied by 0.1 to determine the 

maximum signal range 𝑟 of the waveform. 

 

Converting to signal: In the waveform channel of the slice, 

the width is indicative of time, the height is representative 

of the signal range. To transform the waveform channel of 

slices into a one-dimensional signal, a scan is conducted on 

each slice from left to right using a kernel of size (height, 

1) During this process, the height indices where non-zero 

values exist are listed, representing signal values. In the 

absence of a non-zero value at any point, a NaN (Not a 

Number) value is used. These NaN values are then 

interpolated and reconstructed a digitized signal 𝑠 . The 

signal 𝑠  is normalized to a range (0, 𝑟 ) using min-max 
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scaling. Subsequently, the signal range is approximated as 

an amplitude by subtracting the mean value of the 

normalized signal 𝑠. 

 

3. Results 

As demonstrated in Table 1, the final challenge scores 

and ranks achieved by our team for both classification and 

segmentation tasks are presented. 

 

Task Score Rank 

Digitization SNR: 5.493 2/16 

Classification 𝐹-measure: 0.730 3/16 

Table 1. The signal-to-noise ratio (SNR) and 𝐹-measure of 

our team's model on the hidden data [14] for the 

digitization and classification tasks. 

 

4. Discussion and Conclusions 

In this study, we proposed a method for extracting key 

components to digitize and classify 12-lead ECG images. 

The effectiveness of our approach is demonstrated by its 

performance across both digitization and classification 

tasks, which has practical implications. However, further 

refinement is necessary in several areas. The classification 

model employs an excessively large input data set, 

necessitating supplementary sizing experiments to rectify 

the inefficiency. Furthermore, the digitization algorithm 

operates as a rule-based algorithm, rendering performance 

susceptible to reductions when unexpected exceptions 

occur. 

In conclusion, our proposed method demonstrates 

significant promise; however, there remains potential for 

further improvement, particularly in reducing 

computational costs and enhancing robustness to signal 

variability. Future research should focus on optimizing the 

classification input size and transitioning to a more 

adaptive deep learning model for signal conversion in the 

digitization algorithm. 
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