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Abstract

Standard methods of estimating the power spectral den-
sity (PSD) of irregularly sampled signals such as instanta-
neous heart rate (HR) require resampling at uniform inter-
vals and replacement of unusable samples. The Lomb pe-
riodogram is a means of obtaining PSD estimates directly
from irregularly sampled time series, avoiding these re-
quirements. This paper compares Fourier, autoregressive,
and Lomb PSD estimates from synthetic, real, and noise-
corrupted real heart rate time series, and examines sys-
tematic differences among these estimates. An algorithm
is presented for obtaining a heart rate time series suitable
for Lomb PSD estimation from an RR interval time series
with included ectopic beats and erroneous measurements.
The paper concludes with a brief survey of other appli-
cations of the technique, such as estimation of respiratory
frequency from a time series of beat-by-beat measurements
of the mean electrical axis.

1. Introduction

Power spectral density estimation is a commonly-used
analytic technique for describing periodicities in time se-
ries. Most non-trivial analyses of heart rate variability
(HRV) depend on PSD estimation. The instantaneous heart
rate time series used as the bases of these analyses are
sampled at intrinsically irregular intervals (if the RR in-
tervals were uniform, there would be no HRV to analyze).
Standard methods for PSD estimation, including Fourier
transform (FT) and autoregressive (AR) methods, oper-
ate on time series with uniform intervals between sam-
ples. To apply FT or AR techniques to heart rate time
series therefore requires that the series be resampled at
uniform intervals[1–3]. The resampling process alters the
frequency content of even a noise-free time series by non-
linear low-pass filtering (Figure1).

If the time series contains inappropriate or missing sam-
ples (as, for example, in heart rate time series with ectopic
beats or noise), PSD estimates can be severely affected,
since impulse noise in the time domain is transformed to
broad-band “clutter” in the frequency domain. In such
cases, resampling is further complicated by the need to in-

fer probable values as replacements[4], with the likelihood
of further alteration of frequency content[5]. For these rea-
sons, some investigators analyze only segments free of ec-
topy and noise[6]; this approach runs the risk of introduc-
ing selection bias in HRV analysis, however, since both
ectopy and noise are correlated with HRV-related factors
such as physical activity.

Methods for PSD estimation based directly on irregu-
larly sampled time series have been used, though not in
HRV analysis, since at least 1976[7, 8]. Methods such as
the Lomb periodogram entirely avoid the problems asso-
ciated with resampling and sample replacement. The high
computational burden of these methods has been a major
obstacle to their general use[9] until recently. In 1989,
Press and Rybicki published a fast algorithm for obtain-
ing an arbitrarily accurate approximation to the Lomb pe-
riodogram[10, 11]. The remainder of this paper illustrates
how the Lomb periodogram, obtained using the Press-
Rybicki algorithm, may be applied to analysis of HRV and
related signals.

2. Examples

Several HR time series are presented below, together
with the corresponding Lomb, FT, and AR spectra. In each
case, an irregularly sampled instantaneous heart rate (IHR)
signal was obtained from an RR interval time series us-
ing the algorithm given in the appendix, and this signal
was used as input to the Press-Rybicki algorithm to ob-
tain the Lomb periodogram. A regularly sampled instan-
taneous heart rate signal[3] was obtained from the same
RR series; this signal (five minutes in length in each case,
and sampled at 2 Hz) was zero-meaned, detrended, zero-
padded to a length of 1024 samples, and Welch windowed,
and the result was used as input to standard fast Fourier
transform (FT) and autoregressive model (AR) algorithms
for PSD estimation[11]. In the examples shown here, the
AR models are of order 24. The Lomb and AR spectra
can be evaluated for any desired frequencies; for purposes
of comparison, all spectra were evaluated at the discrete
frequencies defined for the Fourier spectra.

To demonstrate the essential similarity of FT, AR, and
Lomb PSD estimates, synthesized HR time series are



0 120 240
Time (sec)

0

50

100

150
H

R
 (b

pm
)

0.0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)

10-12

10-9

10-6

10-3

100

Po
w

er

Figure 1. Synthesized HR time series and corresponding
spectra (see text). In Figures 1–5, the upper trace is the
resampled HR series used to derive the FT and AR spectra;
below it is the IHR series (offset by 25 bpm for clarity)
used to derive the Lomb spectrum. The lower panel shows,
from top to bottom: the Lomb spectrum (heavy line); the
AR spectrum (dotted line); and the FT spectrum (thin line).
For clarity, the AR and FT spectra are offset by 103 and 106

units respectively.

shown in Figures 1 and 2.
These five-minute sequences were generated using a re-

currence of the form

RRi = a0+a1 sin(ω1ti + φ1)+a2 sin(ω2ti + φ2)+a3z
(1)

ti+1 = ti +RRi (2)

where RRi is the RR interval beginning at ti, z is a ran-
dom variable evenly distributed between -1 and 1, and
the remaining parameters are arbitrary constants. For the
simulation shown in Figure 1, both a1 and a2 are 0, so
that the sequence contains randomly-varying intervals with
a mean of a0 (1 second in the simulations shown here).
The Lomb periodogram of this sequence is consistent with
white noise, whereas the FT and AR spectra show the
high-frequency (HF) attenuation expected as a result of
the resampling process. In Figure 2, a1 and a2 are equal
and larger than a3; ω1 and ω2 are chosen to modulate the
RR intervals at frequencies of 0.05 and 0.41 Hz, to sim-
ulate sympathetically-mediated low frequency HR oscilla-
tions and parasympathetically-mediated respiratory sinus
arrhythmia. The three spectra are quite similar, apart from
the HF attenuation in the FT and AR spectra, and the lack
of detail/clutter in the AR spectrum.

The sequence in Figure 3 was obtained by automated
analysis of an ECG signal acquired from a subject with
sleep apnea syndrome; the low frequency modulation of
heart rate with a period of roughly 45 seconds matches the
frequency of the subject’s obstructive apneas. Although
the spectral peak near 0.025 Hz is most obvious in the AR
spectrum, it is also clearly visible in both the Lomb and
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Figure 2. Synthesized HR time series and corresponding
spectra (see text).

the FT spectra, which also reveal the harmonically related
peak near 0.05 Hz.

The sequence in Figure 4 was obtained by automated
analysis of the same signal used in Figure 3, after addi-
tion of electrode motion artifact scaled to obtain a signal-
to-noise ratio of 12 dB. Roughly 30 QRS detector errors
resulting from the added noise are readily discernible in
the time series. Although much of the sequence is rejected
by the algorithm that prepares input for the Lomb peri-
odogram, the peak near 0.025 Hz is still prominent, and
the first harmonic also remains visible. The 0.025 Hz peak
is visible but not significant among the clutter in the FT
spectrum, and the AR spectrum has no significant features.

By rejecting the outliers and using a predictive interpo-
lator to obtain replacement samples, as shown in Figure 5,
the 0.025 Hz peak emerges as a broad feature in the AR
spectrum, but the FT spectrum shows a broad, spurious
peak at about 0.015 Hz.

Other irregularly-sampled time series frequently appear
in HRV-related studies. Among those amenable to Lomb
PSD analysis are respiration intervals and tidal volumes,
gait, and beat-by-beat systolic blood pressure measure-
ments. As a final example, Figure 6 shows a time series of
beat-by-beat measurements of the mean cardiac electrical
axis, which fluctuates in response to respiration[12]; the
Lomb spectrum clearly reveals the respiratory frequency.

3. Conclusions

Lomb and FT spectra are derived using O(N logN) al-
gorithms, and AR spectra are derived using an algorithm
that is only slightly slower for reasonable choices of model
order. The essential similarity of the Lomb, FT, and AR
spectra given ideal inputs, considered in light of their sim-
ilar computational demands, suggests that there may be
little reason to choose one over any other. When consid-
ering the less-than-ideal inputs endemic to HRV studies,
however, only the Lomb method produces robust PSD es-
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Figure 3. HR time series and spectra during periodic ob-
structive apneas.
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Figure 4. HR time series from Figure 3, corrupted by
added noise, with corresponding spectra.
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Figure 5. HR time series from Figure 4, corrected using
a predictive interpolator, with corresponding AR and FT
spectra.

timates in the presence of noise and ectopy. The Lomb
method avoids all of the complications and pitfalls of re-
sampling and replacement of outliers, and introduces no
drawbacks of its own; in consequence, it is the method of
choice for PSD estimation of heart rate.
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Figure 6. Electrical axis time series (above), with Lomb
spectrum (below).
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Appendix

The C program below generates an instantaneous heart
rate (HR) signal suitable for Lomb PSD estimation. Its
input should be a two-column list of beat arrival times (in
seconds) and beat type codes (1 for normal beats, any other
value for other types of beats). The output contains a sub-
set of the beat arrival times, with a sample of the HR sig-
nal (in units of beats per minute) following each time. The
scanf and printf statements may be replaced if differ-
ent input or output formats are required.

Note that this algorithm aggressively rejects intervals
likely to be outliers (whether due to ectopic beats, falsely
detected beats, missed beats, or simply mismeasured beat
arrival times). When used to derive a Lomb PSD estimate,
this strategy works well, and permits robust derivation of

spectra even from highly corrupted time series. When de-
riving FT or AR spectra, less stringent criteria must be
used, since the cost of deleting samples is high (either they
must be replaced, or the entire time series must be dis-
carded).

#include <stdio.h>
#include <math.h>
#define NORMAL 1
#define OTHER 2
#define TOL 10 /* tolerance (bpm) */

main()
{

double ihr, ihrp, mhr = 70., t, tp;
int b, bp = OTHER;

while (scanf("%lf%d", &t, &b) == 2) {
if (b == NORMAL) {

ihr = 60./(t - tp);
mhr += (ihr - mhr)/10.;
if (bp == NORMAL &&

fabs(ihr - ihrp) < TOL &&
fabs(ihr - mhr) < TOL)
printf("%g %g\n", tp, ihr);

bp = NORMAL;
tp = t;
ihrp = ihr;

}
else

bp = OTHER;
}

}
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