
Convolutional Neural Network and Rule-Based Algorithms for classifying
12-lead ECGs

Bjørn-Jostein Singstad1, Christian Tronstad1, 2

1University of Oslo, Oslo, Norway
2 Oslo University Hospital, Oslo, Norway

Abstract

This study is a part of the PhysioNet/Computation in
Cardiology (CinC) Challenge 2020. Our objective was
to classify 27 cardiac abnormalities based on a provided
dataset of 43101 ECG recordings. We developed a hy-
brid model combining a rule-based algorithm with differ-
ent Deep Learning architectures.

We compared two different Convolutional Neural Net-
works (FCN and Encoder), a combination of both, and
with the addition of another neural network. Two of these
combinations were finally combined with a rule-based
model using derived ECG features. We evaluated the per-
formance of the models on validation data during model
development using hold- out validation. Finally, we de-
ployed the models to a Docker image, trained the model
on the provided development data before the models were
tested on a hidden data set, giving a performance based on
a particular Physionet Challenge score.

Our team, TeamUIO, found that the FCN in parallel
with an Encoder without any rule-based model performed
best on the validation data with a score of 0.412. However,
the best score on the test set was the Encoder in parallel
with a Fully Convolutional Network with the rule-based
model added, receiving a score of 0.377.

1. Introduction

The electrocardiogram (ECG) reflects the electrical ac-
tivity of the heart, and the interpretation of this recording
can reveal numerous pathologies of the heart. An ECG is
recorded using an electrocardiograph, where modern clin-
ical devices usually contain automatic interpretation soft-
ware that interprets the ECGs directly after recording. Al-
though automatic ECG interpretation started in the 1950s,
there are still some limitations [1,2]. Because of the errors
they make, doctors have to read over the ECGs [3]. This
is time consuming for the doctors and requires high degree
of expertise [4]. There is clearly a need for better ECG
interpretation algorithms.

The recent years has shown a rapid improvement in the
field of machine learning. A sub-field of machine learn-
ing is called Deep Learning, where more complex archi-
tectures of neural networks are better able to scale with
the amount of data in terms of performance. This type
of machine learning has shown promising performance in
many fields including medicine, and in this study, we have
explored the usefulness of deep learning in classifying 12-
lead ECGs.

As a starting point for our model architecture we chose
to use the two best performing Convolutional Neural Net-
works (CNN) used on ECG data in Fawaz HI et al 2019
[5]. They reported that Fully Convolutional Networks
(FCN) outperformed eight other CNN architectures com-
pared. We also wanted to test the second-best architecture
which was an Encoder Network. We also assessed the in-
tegration of a rule-based algorithm within these models in
order to test the performance of a CNN and rule-based hy-
brid classifier.

This study is a part of the PhysioNet/Computing in Car-
diology Challenge 2020, where the aim was to develop
an automated interpretation algorithm for identification of
clinical diagnoses from 12-lead ECG recordings.

2. Methods

2.1. Data

To train the CNN models we used open data from six
different sources [6–9]. The data set contained 43.101
ECG recordings in total, where each ECG recording also
included one associated information file. The informa-
tion file described the recording, patient attributes (age and
gender) and the diagnosis (the label we want to predict).
All diagnoses where decoded according to Systematised
Nomenclature of Medicine Clinical Terms (SNOMED-
CT) encoding. A total number of 111 diagnoses where
represented in the data set. As some of the different di-
agnoses could co-exist with each other, there was a total
number of 1414 different combinations of diagnoses rep-
resented in this data set.



The recording length varied across the different ECG
signals, but 83.4% were 5000 samples long. 98.5% of the
recordings were sampled at a frequency of 500Hz except
for 1.3% signals sampled at 1kHz and 0.2% signals sam-
pled at 257Hz.

2.2. Preprocessing

According to the goal of this challenge we aimed to clas-
sify 27 of the 111 diagnoses [10]. The 27 labels to classify
were One-Hot encoded, with each diagnosis represented as
a bit in a 27-bit long array. All recordings were padded and
truncated to a signal length of 5000 samples. Padding and
truncation were done by removing any parts longer than
5000 samples and adding a tail of 5000 − n zeros to any
recording of length n < 5000.

2.3. CNN architectures

As a starting point for classifying the ECG-signals we
employed FCN and Encoder types of CNN models as de-
scribed in Fawaz HI et al 2019 [5]. We tested the two mod-
els without any modifications to the architecture other than
changing the input and output layers to fit our input data
and output classes. We ensured that all output layers of
each models used the Sigmoid activation function.

To make use of the provided age and gender data we
added a simpler neural network model with 2 inputs, one
hidden layer of 50 units and 2 outputs. We combined this
new model with our FCN and Encoder models by concate-
nation of the last layer of the CNNs.

Age data were passed into the model as integers, but in
some information files the age of the patient was not given,
and we assigned them a value of -1. The gender data was
transformed into integers, where male was set equal to 0,
female equal to 1 and Unknown was set to 2.

The two CNN models (FCN and Encoder) were com-
bined as two parallel models, concatenated on the second
last layer. This model was also tested with and without a
parallel dense layer.

2.4. Rule-based model

The rule-based algorithm took the raw ECG signal,
without any padding or truncating, as input. R-peak de-
tection [11], and heart rate variability (HRV) analysis was
programmed in order to add relevant derived features to
the model. An HRV- score was obtained by computing the
root mean square of successive differences between nor-
mal heartbeats (RMSSD) using the detected R-peaks as
timing indicators of each heartbeat.

The rule-based algorithm was able to classify eight dif-
ferent diagnoses: atrial fibrillation, bradycardia, low QRS-

complex, normal sinus rhythm, pacing rhythm, sinus ar-
rhythmia, sinus bradycardia and sinus tachycardia.

The rule-based algorithm performed classification inde-
pendent of the deep learning models. If there was dis-
agreement between the rule-based algorithm and the CNN
model, the rule-based algorithm overwrote the classifica-
tion from the CNN model.

2.5. Model development

We trained and validated the model on the development
dataset using hold-out validation with a split of 38790
(90%) for training and 4311 for validation (10%). We used
the first fold in a stratified K-fold with a random seed of
42 [12]. The splitting was arranged such that all the 1414
unique combinations of diagnoses were present in both the
training and validation data.

During training we used the Area Under the Curve
(AUC) score on the validation set to determine if the learn-
ing rate should drop or stay. The learning rate was initially
set to 0.001 for all models and decreased by a factor of 10,
using the reduce on plateau method [13], each epoch the
AUC score did not improve. Early stopping [13] was trig-
gered when the AUC score on the validation data did not
improve over two successive epochs.

2.6. Threshold optimization

After training the model on the validation set, we opti-
mized the prediction thresholds. This was done by running
the classifier on all the validation data and receiving a score
between 0 and 1 for each of the classes. We then used
Nelder-Mead Downhill Simplex Method [14, 15] to opti-
mize the threshold individually for the 27 classes. Down-
hill Simplex Method is used to find the local minimum of a
function using the function itself and a initial guess of the
variable of the function. We optimized the 27-element long
array using the negative of the PhysioNet scoring function
[10]. To increase the possibility of finding the global max-
imum of the PhysioNet score we gave all elements in the
27-element long array a value of 1 and multiplied it with
a variable that was given values from 0 to 1, with a step
size of 0.05. We used the value that gave the highest Phy-
sioNet score as the initial guess for the Downhill Simplex
Method.
2.7. Model deployment

To obtain a valid score in the PhysioNet/CinC Challenge
we submitted a model to the PhysioNet/CinC committee
for testing on a hidden test set. We used a Docker image
to create a virtual Python environment for the model to
be tested. When the model was trained for deployment it
was trained on the whole development set. The first test
scores were obtained using AUC on the development data



Model Rule-based validation validation validation validation validation test
model AUC F1 F2 G2 score score

FCN No 0.875 0.381 0.446 0.230 0.348 -
Encoder No 0.866 0.396 0.429 0.228 0.398 0.229
FCN + Age, Gender No 0.877 0.368 0.438 0.222 0.385 0.302
Encoder + Age, Gender No 0.828 0.334 0.389 0.190 0.333 0.272
Encoder + FCN No 0.872 0.399 0.436 0.237 0.409 -
Encoder + FCN Yes 0.872 0.361 0.413 0.203 0.348 0.377
Encoder + FCN + Age, Gender No 0.866 0.400 0.434 0.233 0.395 -
Encoder + FCN + Age, Gender Yes 0.866 0.356 0.405 0.198 0.338 0.364

Table 1. Scores obtained by eight different models during model development and model deployment. The models
were evaluated by 5 different metrics, AUC, F1, F2, G2 and PhysioNet scoring metric, during model development. In the
deployment phase the model was only evaluated by the PhysioNet scoring metric. 3 scores are missing in the test score
column due to unsuccessful deployment

to schedule the reduction of the learning rate. The second
half of the test scores were obtained using a learning rate
scheduler. The learning rate schedule was programmed to
be the same as in the model development.

2.8. General parameters for both valida-
tion and testing procedures

For all models in both validation and deployment we
used binary cross entropy as loss function. A batch gener-
ator was used to feed the model with data during training,
programmed to shuffle the order of data for each epoch.

To deal with the imbalanced data (skewed classes) in
our data set we calculated weights based on the number of
occurrences of the different classes [12]. The calculated
weights were passed to the model during training to give
higher priority to rare diagnoses and lower priority to di-
agnoses that occur more frequently.

Hyperparameter tuning was done on a subset of data
to select the best optimizer [Adam, SDG, Adamax, RM-
Sprop, Adadelta, Ftrl, Nadam] and batch size [20, 30, 40,
50]

3. Results

3.1. Scoring metrics

All models were scored on the validation data and com-
pared using the metrics AUC (Eq 1), F1-score (Eq 2), F2-
score (Eq 3), G2-score (Eq 4) and the PhysioNet Challenge
score[10]. On the test set we only obtained the PhysioNet
Challenge Score.

AUC(ti−ti−1) = (ti − ti−1)×
f(ti) + f(ti−1)

2
(Eq 1)

F1 =
2× TP

2 ∗ TP + FP + FN
(Eq 2)

F2 =
(1 + 22)× TP

(1 + 22)× TP + FP + 22 × FN
(Eq 3)

G2 =
TP

TP + FP + 2× FN
(Eq 4)

3.2. Classification performance

Five out of the eight models we have validated in this
study were successfully deployed and thus obtained a score
on the test set. The best performance during the model de-
velopment, on the validation set, was achieved by an En-
coder in parallel with an FCN as seen in row five in table
1. The best result on the test set was achieved by Encoder
in parallel with an FCN with rule-based algorithms as seen
in row six in table 1.

4. Discussion and conclusion

In this study we chose to pad and truncate the signals to
5000 samples which was necessary to be able to feed the
signal to the CNN. The disadvantage of doing this was that
some important information from segments of the ECG
recordings could have been omitted in training the models.
On the other hand, the derived features used in the rule-
based implementation were based on complete recordings.

Deployment of the models were done using two differ-
ent ways of controlling the learning rate. Row 2, 3 and 4
in Table 1 shows test scores that were obtained by using
AUC on the development data to schedule the reduction of
the learning rate. This could possibly have contributed to
the overfitting indicated by the validation to test score dif-
ferences for these models. The test scores in row 6 and 8 in
Table 1 were obtained using a learning rate scheduler are
more consistent with their validation scores . In summary,



our result indicates that the deployed models that keep the
same training schedule as in the development model seems
to avoid overfitting and performs better on unseen data.

The results in Table 1 show that FCN performed better
than the Encoder on AUC, F2 and G2-score on the vali-
dation set during model development. The encoder on the
other hand performed better on the F1 score and the Phy-
sioNet Challenge metric. This can indicate that FCN is
slightly better than the Encoder, but since the PhysioNet
metric is the main metric in this study this can be used to
argue for the opposite.

Our parallel model for gender and age decreased the per-
formance on every metric for the Encoder. However, for
the FCN the AUC and the PhysioNet score improved when
adding the parallel model for gender and age.

Encoder + FCN and Encoder + FCN + Age, Gender
decreased in performance on the validation data during
model development when adding the rule-based model.
However, the performance of the deployed model was ac-
tually better than the development model. Our results indi-
cate that the hybridization of CNN with a rule-based model
could improve diagnostic classification of ECG, but further
analysis is needed to confirm whether, and to which extent
such implementation improves the performance of the pro-
posed CNN models.

5. Code Availability

The code used in model development is available in a
Kaggle Notebook environment 1
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