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Abstract 

Quantification of viable left atrial (LA) tissue is a 
reliable information which should be used to support 
therapy selection in atrial fibrillation (AF) patients. Late 
gadolinium-enhanced magnetic resonance imaging 
(LGE-MRI) is employed for the non-invasive assessment 
of LA fibrotic tissue. Unfortunately, the analysis of LGE-
MRI relies on manual tracing of LA boundaries. This task 
is time-consuming and prone to high inter-observer 
variability due to several reasons including the different 
degrees of observers’ experience, LA wall thickness and 
data resolution. Therefore, an automatic approach for LA 
wall detection would be very helpful. In this study, we 
compared the performance of different deep architectures 
– U-Net and attention U-Net (AttnU-Net) – and different 
loss functions - Dice loss (DL) and focal Tversky loss 
(FTL) to automatically detect LA boundaries from LGE-
MRI data. In addition, AttnU-Net was trained without 
deep supervision (DS) and multi-scale inputs (MI), with 
DS and with DS+MI. No statistically significant 
differences were found training the networks with DL or 
FTL. U-Net was the best-performing algorithm overall, 
outperforming significantly AttnU-Net with a Dice 
Coefficient of 0.9015±0.0308 (mean ± standard 
deviation). However, no significant differences were 
found between U-Net and AttnU-Net DS/DS+MI. Based 
on these results, using a DL or FTL does not affect the 
segmentation performance and U-Net provides the best 
performance to detect LA boundaries from LGE-MRI; 
lastly, accurate and similar LA boundaries to U-Net can 
be obtained using AttnU-Net with DS and AttnU-Net with 
DS+MI.  

 
 

1. Introduction 

Atrial fibrillation (AF) is the most common arrhythmia 
in the western world [1]. Consequences of AF could lead 
to a notable reduction in quality of life and, mainly, an 
increase of stroke risk by five-fold [2]. 

Radio frequency ablation (RFA) of the left atrium 
(LA) represents the clinical therapy for AF patients in 

which antiarrhythmic drugs and direct current 
cardioversion do not provide improvements. However, 
despite strong improvements for the targeting and the 
delivery of AF RFA, the long-term restoration of sinus 
rhythm is achieved only in a limited percentage of AF 
patients [3]. These results suggest that there is room for 
improvements in RFA treatment.  

Information related to scarred and non-scarred atrial 
tissue may be of great importance to select the best AF 
treatment as well as to predict AF recurrence. Magnetic 
resonance imaging (MRI) can differentiate between 
scarred and non-scarred atrial wall by using late 
gadolinium enhancement (LGE) imaging. Unfortunately, 
the analysis of LGE-MRI is based on a time-consuming 
procedure of manual tracing of LA wall and PVs [5], thus 
reducing its use in clinical practice. In addition, results 
are affected by high variability among experts and low 
reproducibility in multicenter studies. 

Deep learning is a branch of machine learning that 
received particular attention in computer vision 
applications, especially when handling images and time 
series [6]. Recently, these techniques were largely applied 
not only to physiological signals (such as 
electroencephalography, electromyography and 
electrocardiography) [7-9] but also to MRI data [10] to 
design detection, classification, reconstruction and 
segmentation algorithms. Convolutional neural networks 
(CNNs) were successfully applied to automatically 
segment biological structures. A successful CNN for 
semantic segmentation is U-Net [11], a fully 
convolutional architecture composed by a contracting and 
an expansion paths with multi-scale skip connections that 
has become the de facto standard for image segmentation. 
Class-imbalance is an important aspect in image 
segmentation to deal with. The Tversky loss function was 
proposed to alleviate class-imbalance but it struggles to 
balance precision and recall due to small regions-of-
interest (ROI) in medical images. To overcome this 
limitation, the focal Tversky loss function was designed 
by Abraham et al. [12] and tested on lesion segmentation. 
Furthermore, efforts were made to segment small ROI by 
designing more discriminative models such as CNNs with 
attention gates (AGs) [13] allowing the model to focus on 
the target region related to the task. Among the 



approaches proposed in literature to automatic segment 
LA boundaries from LGE-MRI, U-Net is commonly used 
achieving outstanding results [14-16].  

The aim of this study was to delve into three main 
methodological aspects when designing an automatic 
algorithm based on a fully convolutional CNN for LA 
segmentation from LGE-MRI. These were: i) compare U-
Net with its variant including AGs [13]; ii) compare the 
dice loss, a traditional loss function used for image 
segmentation, with the focal Tversky loss proposed in 
[12] to improve precision and recall balance; iii) study the 
effect of deep supervision (DS) and multi-scale inputs 
(MS) on the performance of AttnU-Net as done in [12] in 
a different objective task. 

 
2. Methods 

2.1. Dataset 

Experiments were conducted on the data from the 
Statistical Atlases and Computational Modelling of the 
Heart 2018 Atrial Segmentation Challenge 
(http://atriaseg2018.cardiacatlas.org/), which includes 100 
LGE-MRI 3-D cardiac data with the related ground truth 

segmentations obtained by manually tracing the LA 
endocardial wall. The resolution is 0.625x0.625x0.625 
mm3 and the images are composed by 88 axial slices with 
in-plane size of 576x576 or 640x640 pixels. Five-fold 
cross-validation was performed and early stopping was 
applied using a validation set of 10% extracted from the 
training set in each fold.  

 
2.2. Two-stage segmentation approach 

All the approaches were based on a two-stage 
segmentation. The first stage was devoted to reducing the 
total number of pixels and therefore, the computational 
cost of the proposed algorithms. This was used also in our 
past studies [15,16] and was accomplished by applying 
the Otsu’s algorithm to the central slice of each 3-D LGE-
MRI data. Once the binary image resulting from this 
stage was obtained, the centroid of the region located in 
the centre of the image was automatically extracted; the 
limits of the region of interest were automatically 
computed and a 3-D crop centred in the LA of fixed size 
of 88x320x384 pixels was extracted. Each 3-D LGE-MRI 
image was then then subsampled to 192x240 in the axial 
plane to further reduce the computational cost. Within 

  
Figure 1: Schematization of the architectures. Feature maps are represented as gray and white boxes (AG outputs). Blue dashed 
boxes represent concatenation operators. Black arrows denote 3x3 convolution + batch normalization + ReLU non-linearity, red 
arrows 2x2 max pooling, blue arrows 2x2 transposed convolution, black dashed arrows skip connection and yellow arrows 1x1 
convolution + sigmoid non-linearity. From the scheme reported in the figure, the U-Net architecture result without considering 
MS, DS and AGs, AttnU-Net without considering MS and DS and AttnU-Net+DS without considering MS. Lastly, the whole 
scheme corresponds to AttnU-Net+DS+MI. 



each fold, the axial slices were collected and used to train, 
test and validate the 2-D models using 6336, 1760 and 
704 examples, respectively.  

The second stage was devoted to providing the fine 
segmentation from the LA-centred crops as obtained from 
the previous stage. This was performed using U-Net and 
AttnU-Net with the hyper-parameters set as in [12,16]. At 
the deepest encoding level of the contractive path, the 
model retains the richest feature representation. However, 
the cascade of convolutions and non-linearities is 
detrimental for the spatial resolution leading to wrong 
detection when small objects with high morphology 
variability are processed. Attention gates mitigate this 
issue, identifying relevant spatial information from low-
level feature maps and propagating them up to the 
decoding stage. The structure of the AGs adopted in this 
study was the one proposed by Oktay et al. [13]. The 
coefficients 𝛼! produced by the AGs for each pixel i-th, 
scale the input feature maps to output semantically 
relevant features. Lastly, the design of AttnU-Net as 
proposed in [12] was modified only in its number of 
feature maps learned at each scale, in order to match the 
one used in our previous study [16] using U-Net and the 
main hyper-parameters are summarized in Figure 1. In 
addition, the supervision of AttnU-Net was modified by 
including the combination of deep supervision, 
computing the loss also from 2-D probability distributions 
at lower spatial scales, and multiple-scale inputs, 
providing the input images at the different spatial scales 
to the encoder, as this was found to be beneficial when 
segmenting small ROIs [12]. Thus, this resulted in 2 
additional architectures, namely AttnU-Net+DS and 
AttnU-Net+DS+MI. 
 
2.2. Optimization 

The optimization of the three architectures was driven 
alternatively by 2 different loss functions. These were the 
dice loss (DL) and the focal Tversky loss (FTL) function. 

The dice coefficient (DC) is an overlap index widely 
used to evaluate segmentation maps. The 2-class DC can 
be computed as (Equation 1): 
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where c is the c-th class, the index i runs over all pixels 
(N in total), 𝑔!" ∈ {0,1} is the ground truth value, 𝑝!" ∈
[0,1] is the prediction value and 𝜖 is added for numerical 
stability. Thus, the DL can be computed as 𝐷𝐿 = 1 −
∑ 𝐷𝐶"" . The DC has two main limitations: i) it equally 
weights false positive (FP) and false negative (FN) 
detections, corresponding to predicted segmentations with 
high precision and low recall; ii) it struggles to segment 
small ROIs due to their small contribution to the loss 
function.  

The Tversky similarity index (TI) is a generalization of 
the DC that enables flexibility balancing FPs and FNs 
(Equation 2): 
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where �̄� indicates the complementary class in the 2-class 
scenario. The hyper-parameters 𝛼 and 𝛽 can be tuned to 
change the recall improvement in case of large class-
imbalance. If 𝛼 = 𝛽 = 0.5, TI corresponds to DC; in this 
study, we adopted 𝛼 = 0.7 and 𝛽 = 0.3 as in [12]. Thus, 
the Tversky loss function can be computed as 𝑇𝐿 = 1 −
∑ 𝑇𝐼"" . In order to overcome the point ii), Abraham et al. 
[12] proposed the FTL, which is the TL parametrized by 
𝛾 ∈ [1,3], 𝐹𝑇𝐿" = ∑ (1 − 𝑇𝐼")+/-" . In this study, we used 
𝛾 = 4 3⁄  as this value was found optimal in [12].  

Lastly, Adam was used as optimizer with a learning 
rate of 10./, a maximum number of training epochs of 
100 and a batch size of 32.  
 
3. Results 

All the experiments were conducted using Keras as 
framework to build the deep neural networks and were 
accelerated using the free resources offered by the Google 
Colaboratory project.  

An example of the detected LA boundaries is shown in 
Figure 2; the gold standard (blue) and the predicted (red) 
LA boundaries as obtained with the 4 architectures are 
reported in Figure 2 for the same representative example. 

On average, training CNNs using FTL or DL resulted 
in a DC of 0.8897 and 0.8912, respectively (p>0.05, 
Wilcoxon signed-rank test). In addition, paired Wilcoxon 
signed-rank test were performed between U-Net and its 
variants based on AGs, applying Bonferroni correction 
for multiple comparison. Results are presented in Table1. 

 
Table 1. DC scored with the 4 different architectures trained 
with the FTL and DL. *p<0.05, Wilcoxon signed-rank test 
corrected for multiple comparison. 

Architecture  DL FTL 
U-Net  0.9015±0.0308 0.8941±0.0444 
AttnU-Net 0.8906±0.0521* 0.8855±0.0386* 
AttnU-Net+DS 0.8985±0.0615 0.8923±0.0389 
AttnU-
Net+DS+MI 

0.8945±0.0323 0.8931±0.0312 

 
 

3. Discussion and conclusion 

All the approaches investigated provided fast joint 
segmentations of LA and PVs in patients with AF, 
exploiting a dual-stage segmentation algorithm with a 
Otsu-based localization stage and a CNN-based fine 



segmentation stage. Despite the variability of the LA 
morphology, all the approaches scored accurate 
prediction of LA boundaries. Prospectively, these 
solutions could be useful to support ablation therapy in 
terms of (1) making available an accurate patient specific 
anatomical model and (2) as a first step for fibrosis 
quantification on the LA wall. From the results obtained 
in the performed experiments, the use of the improved TL 
did not change significantly the performance in our target 
decoding task. U-Net resulted the best-performing 
architecture both with FTL and DL, but statistical 
significance was found only respect to the baseline 
AttnU-Net architecture. The variants AttnU-Net+DS and 
AttnU-Net+DS+MI showed comparable performance 
with U-Net and this can be also observed in the predicted 
LA boundaries reported in Figure 2 for a representative 
input. In the future, the comparison of these approaches 
will be extended using also other metrics and using 3-D 
architectures. 
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Figure 2: Example of the detected LA boundaries in one mid LA slice applying the different architectures (blue: reference 
contours; a: U-net; b: AttnU-Net; c: AttnU-Net+DS; d: AttnU-Net+DS+MI). 
 


