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Abstract

Recent algorithmic advances in electrocardiogram
(ECG) classification are largely contributed to deep learn-
ing. However, these methods are still based on a rela-
tively straightforward application of deep neural networks
(DNNs), which leaves incredible room for improvement. In
this paper, as part of the PhysioNet / Computing in Cardi-
ology Challenge 2020, we developed an 18-layer residual
convolutional neural network to classify clinical cardiac
abnormalities from 12-lead ECG recordings. We focused
on examining a collection of data pre-processing, model
architecture, training, and post-training procedure refine-
ments for DNN-based ECG classification. We showed that
by combining these refinements, we can improve the classi-
fication performance significantly. Our team, DSAIL SNU,
obtained a 0.695 challenge score using 10-fold cross-
validation on the training data, and a 0.692 challenge
score on the subset of test data.

1. Introduction

Electrocardiogram (ECG) is a commonly used non-
invasive diagnostic tool that records the electrical activ-
ity of the heart. The standard 12-lead ECG is pivotal for
detecting a wide spectrum of cardiac abnormalities such
as atrial fibrillations [1]. Computer-aided classification of
ECG has become more significant for automated ECG in-
terpretation. However, substantial misdiagnosis rates of
classical algorithms are often a serious issue in the every-
day practice of clinical medicine [2].

Building upon the success of deep learning, recent al-
gorithmic advances in ECG classification are largely con-
tributed to deep neural networks (DNNs). Previous works
have used DNNs for single-lead and 12-lead ECGs and
demonstrated high diagnostic performance similar to that
of cardiologists [3,4]. Nevertheless, these methods are still
based on a relatively straightforward application of DNNs.
Training procedure refinements, such as the changes in
loss functions, have not been studied thoroughly, which
leaves incredible room for expansion and innovation [5].

In this paper, as part of the PhysioNet / Computing in
Cardiology Challenge 2020 [6], we developed an 18-layer
residual convolutional neural network to classify clinical
cardiac abnormalities from 12-lead ECGs. We focused
on examining a collection of data pre-processing, model
architecture, training, and post-training procedure refine-
ments for DNN-based ECG classification. They intro-
duce small modifications that barely change computational
complexity. However, our empirical evaluations showed
that combining these refinements can lead to significant
and consistent performance improvement.

2. Methods

We first define our baseline experiment setup, and then
present a collection of refinements. We used a wide resid-
ual network (WRN) similar to the model used in the previ-
ous work [3]. Each model was implemented using PyTorch
[7] and trained for 100 epochs on an NVIDIA V100 GPU.
We used binary cross-entropy (BCE) loss, the Adam op-
timizer, a batch size of 128, a learning rate of 0.001, L2
weight decay of 0.0005, and a dropout probability of 0.3.



Dataset
Number of
Recordings

w/ Scored
Labels

Length
(Seconds)

PTB-XL 21,837 21,604 10
Georgia 10,344 9,458 9
CPSC 6,877 5,279 15
CPSC-Extra 3,453 1,278 15
PTB 516 97 110
StPetersburg 74 33 1,800

Table 1. Data statistics.

2.1. Data Filtering and Split

PhysioNet / Computing in Cardiology Challenge 2020
provides 43,101 12-lead ECGs with 27 scored SNOMED-
CT labels [8] from 6 datasets (Table 1). To the best of our
knowledge, this is the first public competition to focus on
a realistic clinical using multiple heterogeneous sources.

For the ease of training DNNs, we used the following
procedures for the data filtering and split. First, we ex-
cluded the two datasets (i.e., PTB and StPetersburg) with
long average lengths. Second, we removed the record-
ings without any positive scored labels. Finally, the re-
mained 37,619 recordings were split into 10-folds for
cross-validation. We used iterative stratification to main-
tain distributions of positive examples of each label [9].

2.2. Data Pre-processing

The ECG recordings should naturally be diverse due to
the differences in individuals and data acquisition environ-
ments. To improve the quality of the data, we used two
pre-processing refinements. First, we used 50Hz and 60Hz
notch filters to remove the external electrical noises. Then,
we used a scaler to standardize each recording by remov-
ing the mean and scaling to unit variance. If necessary,
recordings were resampled to a 500 Hz sampling rate.

2.3. Model Architecture

We used WRN-l-k denoting a residual network with l
convolution/dense layers and a widening factor k [10]. It
consists of an input stem, four stages of N residual blocks,
and an output stem (Figure 1). The widening factor k
scales the number of convolutional filters in the model.
We used WRN-10-1 for ablation studies and WRN-18-2
for the final model.

The residual blocks consist of two 11x1 pre-activation
convolutions with batch normalization (BN) and a rectified
linear unit (ReLU). Note that due to the BN-ReLU in the
input stem, the pre-activation is skipped for the first layer
of stage 1. We also applied dropout between the convolu-
tion layers after the pre-activation. The first layers of each
stage perform down-sampling with a factor of 2.
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Figure 1. Model overview.

To efficiently handle variable-length ECGs, we used the
following steps during both training and validation:

1. Divide each recording using a sliding window of 4,096
samples (≈ 4 seconds) with overlaps of 512 samples (≈
1 second).

2. Feed-forward each window through the model up until
its max-pooling layer in the output stem.

3. Concatenate the intermediate outputs from the windows
and use the max-pooling layer to obtain a fixed-length
vector from them.

4. Feed-forward the fixed-length vector into the last dense
layer and the sigmoid activation function.

2.4. Training

Learning rate scheduler
Learning rate adjustment is critical for the training of

DNNs. The widely used strategy is to start from the initial
learning rate and exponentially decrease it when the model
has stopped improving. In contrast, we used a learning rate
scheduler with warmup and cosine annealing strategy [5].
It linearly increases the learning rate from 0 to the initial
learning rate η, then decreases it to 0 by following the co-
sine function (Figure 2). The learning rate ηt at training
epoch t is defined as:

ηt =

{
t
Tw
η if t <= Tw

1
2 (1 + cos( (t−Tw)π

T ))η otherwise
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Figure 2. Learning rate scheduler.

where T and Tw are the number of total training epochs
and warmup training epochs, respectively. In this work,
we used T = 100, Tw = 10, and η = 0.001.

Confusion weighted binary cross-entropy loss
Using a training objective that more closely resembles

an evaluation metric can lead to better performance. In this
work, the target evaluation metric is a generalized accuracy
called challenge score [6]. It is defined as:

sunnormalized =

m∑
i=1

m∑
j=1

wijaij

where A = [aij ] and W = [wij ] are a multi-class confu-
sion matrix and a reward matrix, respectively. aij is the
normalized number of recordings for output class ci with
a positive label cj . wij is the reward for each entry de-
fined by cardiologists based on the similarity of their risks
or treatments. The final score is obtained by normalizing
the score so that an inactive classifier receives a score of 0
and a ground-truth classifier receives a score of 1.

The conventional BCE loss does not take into account
that some misdiagnoses are more harmful than others. In-
stead, we proposed a novel training objective to differ-
entiate the misdiagnoses based on the reward matrix W .
Formally, we defined confusion weighted binary cross-
entropy (CoW-BCE) loss as:

L =
∑
j

(yj log(pj) + cowj(1− yj) log(1− pj)),

cowj =

∑
i yi(1− wij)∑

i yi
,

where yj ∈ {±1} and pj ∈ [0, 1] specifies the label and
the model’s output for class cj , respectively. Compared to
the conventional BCE loss, it has an additional confusion
weight constant cowj . When an example is misclassified
andwij is 0, the loss is unaffected and identical to the BCE
loss. As wij → 1, the constant goes to 0 and the loss for
misdiagnoses with similar risks is down-weighted.

Manifold Mixup
The decision boundary of DNNs is often sharp and

thus hurts its generalization performance. To alleviate the
problem, we adopted Manifold Mixup [11]. The orig-
inal Mixup [12] constructs virtual training examples by
weighted linear interpolations of both inputs and labels. In
this work, we used Manifold Mixup to deal with variable-
length recordings. Instead of the raw ECG inputs, we used
weighted linear interpolations of hidden representations.

Formally, consider training a WRN f(x) = o(g(x)),
where h = g(x) denotes the front part of the model up
to the max-pooling layer, and o(h) denotes the rear part
mapping the intermediate representations to the model out-
puts. Given two random examples (xi, yi) and (xj , yj), the
mixed examples are generated as:

hi = g(xi), hj = g(xj),

ĥ = λhi + (1− λ)hj ,
ŷ = λyi + (1− λ)yj ,

where the mixing coefficient λ ∼ Beta(0.2, 0.2). Then,
the model continues the forward pass with the mixed in-
termediate representations. The model outputs o(ĥ) and
mixed labels ŷ are used to compute the training loss and
train the entire model.

2.5. Post-training

Class-specific thresholds
After training, the model produces scalar prediction

scores p ∈ [0, 1] for each class. Since our target evalua-
tion metric is computed on the predicted classes, a certain
threshold must be applied to binarize the scores. The ob-
vious choice would be applying the threshold of 0.5 for all
the classes but it could be suboptimal.

To address the problem, we selected class-specific
thresholds that perform best in the validation set. For each
class, we independently computed the challenge scores
for the validation set using 100 thresholds evenly spaced
within 0 and 1. We selected the one with the highest chal-
lenge score.

Model ensemble
Ensemble learning methods combine multiple models to
produce final predictions. Both theoretically and empiri-
cally, it has been shown that it usually yields higher pre-
dictive performance than the individual models [13].

We used an ensemble of 10 models from the 10-fold
cross-validation. Since each model was trained with dif-
ferent composition of the training data, the diversity could
lead to a more powerful ensemble model. We aver-
aged both their scalar prediction scores and class-specific
thresholds for the binarization of the scores.



Model F2 G2 CS
WRN-10-1 (standard) 0.515 0.340 0.567
+ Filter & Scaler 0.534 0.356 0.568
+ LR scheduler 0.615 0.412 0.623
+ CoW-BCE loss 0.646 0.420 0.651
+ Manifold Mixup 0.654 0.423 0.658
+ Class-specific thresholds 0.679 0.426 0.676
WRN-18-2 0.696 0.448 0.695

Table 2. 10-fold cross-validation results.

Model Team CS
WRN-18-2 DSAIL SNU 0.692

Table 3. Challenge score on the subset of test data.

3. Results

Table 2 presents the 10-fold cross-validation results for
applying the refinements one-by-one. We report F2 and G2
scores as well as the challenge score (CS). Note that the
evaluation of the model ensemble requires an additional
holdout test dataset and could not be done in the cross-
validation. By stacking each refinement, we have steadily
improved the 12-lead ECG classification performance with
DNNs. Our final model, WRN-18-2, trained with the col-
lection of refinements obtained a 0.695 challenge score.

Table 3 presents the test results. Our final model, the
ensemble of 10 WRN-18-2 models, obtained a 0.692 chal-
lenge score on the subset of test data.

4. Concluding Remarks

In this work, we explored a collection of refinements to
train DNNs for ECG classification. These refinements in-
troduce small modifications to data pre-processing, model
architecture, training, and post-training procedures. Stack-
ing all of them together enabled significant performance
improvement for identifying cardiac abnormalities.

As part of the PhysioNet / Computing in Cardiology
Challenge 2020, the proposed method was evaluated in a
realistic clinical setting using heterogeneous datasets and a
new scoring metric. Thus, the improved results showed its
potential taking it closer to the everyday practice of clini-
cal medicine. We believe one important future work would
be to compare its performance and confusion matrix with
those of cardiologists. Through the analyses, we would
be able to evaluate the model more objectively and better
understand its strengths and weaknesses.

Acknowledgments

This work was supported by the HPC Support Project
(Ministry of Science and ICT, NIPA); and Brain Korea 21
Plus Project in 2020.

References

[1] Schlant RC, Adolph RJ, DiMarco J, Dreifus LS, Dunn MI,
Fisch C, Garson Jr A, Haywood L, Levine HJ, Murray
JA. Guidelines for electrocardiography. Circulation 1992;
85(3):1221–1228.
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