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Abstract

Atrial fibrosis plays an important role in the pathogene-
sis of atrial fibrillation (AF). Low bipolar electrograms (b-
EGMs) peak-to-peak voltage areas indicate scar tissue and
are considered targets for AF substrate ablation. However,
this approach ignores the spatiotemporal information em-
bedded in the signal and the dependence of b-EGMs on
catheter orientation. This work proposes an approach to
detect fibrosis based on the eigenvalue dominance ratio
(EIGDR) in an ensemble (clique) of unipolar electrograms
(u-EGMs). A 2-D tissue with a central circular patch of
fibrosis has been simulated using the Courtemanche cellu-
lar model. Maps of EIGDR have been computed using two
sizes of electrode cliques, from the original u-EGMs within
the ensemble or after a time alignment of these signals.
Performance of each map in detecting fibrosis has been
evaluated using receiver operating characteristic curves
and detection accuracy. Best results achieve an area un-
der the curve (AUC) of 0.98 and an accuracy (ACC) of 1
when we use as marker the gain in eigenvalue dominance
produced by the ensemble alignment.

1. Introduction

Atrial fibrosis represents a structural abnormality of
the atrium, which alters the electrical conduction and ex-
citability of the tissue. Fibroblasts proliferation and their
secretion of extracellular matrix proteins, such as collagen,
characterize fibrotic tissue [1]. These proteins are mainly
involved in the reparative process to replace damaged my-
ocardial parenchyma [2].

Atrial fibrosis is observed to be closely related to atrial
fibrillation (AF), even if their causal relationship is still
challenging [3]. On the one hand, an extensive fibrotic
process in the atrium can promote persistent AF [3]; on
the other hand, structural atrial remodeling found in AF
produces fibrosis and alters tissue function [2]. Electro-

physiologically, atrial fibrosis produces low-voltage intrac-
ardiac electrograms (EGMs), which can be identified us-
ing electroanatomical mapping (EAM) [4]. Peak-to-peak
bipolar voltage maps can be constructed through data ob-
tained during substrate mapping [5], being bipolar voltage
an interesting marker during sinus rhythm (SR) as well as
in AF. Low-voltage areas are typically defined as those
with peak-to-peak bipolar voltage below 0.5 mV during
SR. However, some drawbacks to this procedure should be
put in evidence. First, peak-to-peak voltage measure does
not provide information about morphological features or
temporal trend embedded in the signal; therefore, voltage
thresholding does not take into account the presence of un-
derlying abnormalities in the atria. Second, the method-
ology to define low voltage areas has not been standard-
ised [6]. Third, spatial heterogeneity is not accounted for.
Fourth, low bipolar voltage can also be influenced by other
factors than fibrosis, such as activation direction, electrode
size, interelectrode distance and filtering [4], [6], as well
as by technical problems such as poor electrode contact in
anatomically difficult sites (e.g. the pulmonary veins) or
its instability in time.

In order to overcome these limitations, in this work we
propose the dominant-to-remaining eigenvalue dominance
ratio (EIGDR) of unipolar EGMs (u-EGMs) as a measure
of the voltage wavefront roughness and correlate it with
the presence of fibrosis. We compute maps of eigenvalues
ratios considering two different electrode clique arrange-
ments (ECA) and we evaluated the ability of each map to
detect a fibrosis patch in the context of a simulation study.
Maps have been created from the whole length of u-EGMs,
using 0o and 45o catheter orientations with respect to the
wavefront propagation.

2. Materials

A 2-D atrial tissue of 4x4 cm of hexahedric elements
simulated with 100 µm resolution using the Courtemanche



cellular model [7] has been used. Conduction heterogene-
ity induced by chronic AF in left atrium has been consid-
ered in the model. The simulated tissue includes a circular
patch of diffuse fibrosis having a diameter of 2 cm, where
20% nodes have randomly been assigned the Maleckar
model for fibroblasts [8] and a conductivity reduction of
30%. Let xk(n) be the u-EGMs computed with a sampling
frequency of 1 kHz at a high-density multi-electrode array
(MEA) of 15×15 electrodes, k ∈ {1, . . . , 225}, located
at sites (i, j), i, j ∈ {1, .., 15}. The MEA has an inter-
electrode distance d = 2 mm, is centered in the tissue slice
and located at 1 mm distance from the tissue surface. Each
simulated u-EGM is 500 ms long and contains a single ac-
tivation (depolarization plus repolarization) corresponding
to one sinus beat.

3. Methods

3.1. Eigenvalue analysis

In this work, we propose and assess EIGDR from u-
EGMs at each 3×3 and 2×2 clique from the MEA, as
fibrosis markers. Eigenvalues were obtained from the
spatial covariance matrix of both original and aligned u-
EGMs within clique ensembles. Signals have been aligned
as proposed in [9], according to the maximum cross-
correlation with respect to the highest amplitude u-EGM.
For each electrodes clique, the ratioR of the dominant-to-
remaining eigenvalues, computed as:

R =
λ1∑K
k=2 λk

, (1)

where K is the number of u-EGMs xk(n) in the clique
ensemble (4 or 9 in this study), is estimated to quantify
EIGDR. For a theoretical analysis of EIGDR, the model

xk(n) = αks(n− τk) + fk(n) + vk(n) (2)

is considered for the u-EGMs xk(n) at the kth electrode,
where s(n) is the clean and space invariant u-EGM in the
case of a plane wave propagation, τk is the delay of the kth

u-EGM s(n− τk) with respect to the time reference in the
ensemble, αk is a parameter accounting for u-EGM ampli-
tude (decreased at fibrosis, αk < 1, with respect to normal
tissue, αk = 1), fk(n) represents the u-EGM fibrotic com-
ponent (absent in normal tissue), and vk(n) is the noise
component of the kth u-EGM. The energy of s(n) is de-
noted byEs, andEs′ represents the energy of its derivative
s′(n). The delays τk are characterized by their variance,
β2σ2

θ , with β > 1 in fibrosis, a factor accounting inversely
for fibrosis generated speed reduction relative to normal
tissue where β =1. αk is modelled as random variable
with mean E[αk] = α and variance σ2

α. Noise is con-
sidered to be zero-mean, Gaussian, white and uncorrelated

with τk and fk(n), with variance σ2
v . The variance of the

zero-mean fibrotic component across clique electrodes is
denoted by σ2

f .
Four u-EGMs scenarios for non-aligned (NA) and

aligned (A) u-EGMs at non-fibrotic (NF) and fibrotic (F)
areas are considered and their approximate theoretical
eigenvalues are derived according to the procedure pre-
sented in [10]. Table 1 shows the eigenvalues λk and
EIGDR for the four scenarios.

Fibrosis markers:
• From the derivations in equations presented in Table 1,
it is clear that R > RF , as result of three concomitant ef-
fects appearing simultaneously at fibrosis: a) higher mor-
phology dispersion, σ2

f , b) lower amplitude, α < 1, and c)
larger delays resulting in larger misalignment dispersion
β > 1. Then R is proposed as one marker for fibrosis
detection.
• Similarly, for the same two first reasons, it also results
that RA > RAF , suggesting RA as other fibrosis detection
marker.
• Analyzing the ratio ∆RF between EIGDR in non-
fibrotic areas with respect to fibrotic ones, representing the
eigenvalue concentration lost by fibrosis, and then a mea-
sure of the separability power ofRF as a marker for fibro-
sis, we obtain for misaligned u-EGMs, σ2

θ > 0:

∆RF =
R
RF
≈
β2σ2

θEs′ +
N(σ2

v+σ2
f )

(α2+σ2
α)

σ2
θEs′ +Nσ2

v

. (3)

To evaluate how ∆RF varies with the level of misalign-
ment σ2

θ we perform the derivative, obtaining:

∂∆RF
∂σ2

θ

≈
−Es′N

(
σ2
f + σ2

v

(
1− β2

(
α2 + σ2

α

)))
(
α2 + σ2

α

)
(σ2
θEs′ +Nσ2

v)
2 .

(4)
The term

(
1− β2

(
α2 + σ2

α

))
is typically > 0 since in fi-

brosis β can get values up to 2 and α up to 1/8 [11], result-
ing that ∂∆RF

∂σ2
θ

< 0, justifying the advantage of alignment,

since the higher the misalignment σ2
θ , the lower the separa-

bility capacity ofRF to discriminate between fibrosis and
non-fibrosis, suggesting that RAF is better suited marker
thanRF .
• Alternatively, the ratio ∆RA between EIGDR before
and after alignment, representing the gain in eigenvalue
concentration produced by the ensemble alignment, is con-
sidered. In the case of fibrosis, it is reached the value:

∆RA =
RAF
RF
≈
Es

(
β2σ2

θ

(
α2 + σ2

α

)
Es′ +N(σ2

v + σ2
f )
)

(
N(σ2

v + σ2
f )
)

(Es − β2σ2
θEs′)

.

(5)
To evaluate how ∆RA varies with the level of fibrosis σ2

f

we also perform the derivative, obtaining:



u-EGM model λk EIGDR

NA, NF xk(n) = s(n− τk) + vk(n) λk ≈

 (Es − σ2
θEs′ )K/N + σ2

v , k = 1;
σ2
θEs′K/N + σ2

v , k = 2;
σ2
v , k = 3, . . . ,K,

R≈ Es−σ2
θEs′

σ2
θ
Es′+Nσ

2
v
.

A, NF xk(n) = s(n) + vk(n) λk ≈
{

EsK/N + σ2
v , k = 1;

σ2
v , k = 2, . . . ,K,

RA ≈ Es
Nσ2

v
.

NA, F xk(n)=αks(n−τk)+fk(n)+vk(n) λk≈


(
α2 + σ2

α

)
(Es − β2σ2

θEs′ )K/N + σ2
v + σ2

f , k = 1;(
α2 + σ2

α

)
β2σ2

θEs′K/N + σ2
v + σ2

f , k = 2;

σ2
v + σ2

f , k = 3, .,K

RF≈
Es−β2σ2

θEs′

β2σ2
θ
Es′+

N(σ2v+σ2
f
)

(α2+σ2α)

A, F xk(n) = αks(n) + fk(n) + vk(n) λk ≈
{ (

α2 + σ2
α

)
EsK/N + σ2

v + σ2
f , k = 1;

σ2
v + σ2

f , k = 2, . . . ,K,
RAF ≈

Es
N(σ2v+σ2

f
)

(α2+σ2α)

.

Table 1: Models for non-aligned (NA) and aligned (A) u-EGMs at non-fibrotic (NF) and fibrotic (F) areas, with their
respective eigenvalues λk and eigenvalue dominance ratios EIGDR computed following the procedure presented in [10]

∂∆RA

∂σ2
f

≈
−EsNβ2σ2

θ

(
α2 + σ2

α

)
Es′(

N(σ2
v + σ2

f )
)2

(Es − β2σ2
θEs′)

. (6)

Since for small delays τk, Es � β2σ2
θEs′ it results that

∂∆RA

∂σ2
f

< 0, making this marker ∆RA becoming smaller

the higher the fibrotic component σ2
f , justifying to consider

it as a potential fibrosis marker. Also, ∂∆RA

∂α2 > 0, so the
larger the fibrosis, (reduced α2), the further gets ∆RA re-
duced. However, ∂∆RA

∂β2 > 0, and since β increases in
fibrosis, it results in a counteracting effect for the marker
sensitivity to fibrosis. Since fibrosis effects on u-EGM am-
plitude, α2, and morphology, σ2

f , are much more marked
than on conduction velocity, β2, [11], it is expected that the
first two tendencies dominate, making the marker ∆RA to
reduce with fibrosis. Simulation and real experiments can
elucidate the behaviour in practice.

3.2. Assessment of R, RA and ∆RA for fi-
brosis detection

Maps of R, RA and ∆RA have been created process-
ing the complete MEA with the electrode lines in two ori-
entations with respect to the waveform propagation direc-
tion, parallel (0o) and oblique (45o) and two ECA (3×3
and 2×2). The 3×3 ECA provides one EIGDR for each
squared group of nine electrodes with diagonal vertices at
(i, j), and (i+2, j+2), i, j ∈ {1, . . . , 13}, giving a total of
13× 13 pixel maps of markersR,RA or ∆RA. The 2×2
ECA provides values at each squared group of four elec-
trodes with diagonal vertices at (i, j) and (i + 1, j + 1),
resulting in maps of 14× 14 pixels, i, j ∈ {1, . . . , 14}.
Receiver operating characteristic (ROC) curves have been
used to evaluate the markers ability in discriminating fi-
brotic from non-fibrotic areas. For that purpose, a ground
truth mask has been created labelling these areas. Cliques
lying in the tissue interface, i.e., in the line separating the
fibrotic patch from non-fibrotic tissue, were not considered
in the evaluation. For each map, thresholds for fibrosis

identification have been varied to compute the ROC curve.
The area under the curve (AUC) and the maximum accu-
racy (ACC) have been computed for each map, as a mea-
sure of the ability of the marker to detect fibrosis.

AUC/ACC
Clique Angle R RA ∆RA

3×3 0o 0.88/0.86 0.96/0.95 0.97/0.95
45o 0.77/0.75 0.96/0.93 0.98/1

2×2 0o 0.84/0.80 0.85/0.79 0.72/0.70
45o 0.76/0.71 0.96/0.93 0.94/0.89

Table 2: AUC and ACC of the three different metrics

4. Results

Figure 1 shows the mean and standard deviation (SD)
for each studied marker R, RA and ∆RA at fibrotic and
healthy simulated tissues, using 2×2 or 3×3 cliques. The
three markers were significantly lower in the healthy than
in the fibrotic tissue (Wilcoxon rank-sum test, p < 0.05).
RA presents the higher ratio of fibrotic to healthy tis-
sue γ = 2.66 (2.51) for 3×3 (2×2) cliques, being ∆RA
the marker with more significant differences between both
types of tissue (p < 0.05).
Table 2 contains AUC and ACC for the markers consid-
ered. Results show higher values when time alignment of
u-EGMs is performed, especially when MEA has an orien-
tation of 45o with respect to the wavefront direction. The
best discrimination power is obtained by ∆RA, with AUC
= 0.97 (0.98) for parallel (diagonal, where ACC = 1) ori-
entation, using 3×3 ECA. Figure 2 shows the maps of R,
RA and ∆RA obtained with 3×3 ECA and with parallel
catheter orientation. In the lower panels, the detected fi-
brotic areas are shown, using the thresholds that maximize
the detection accuracy of each marker.

5. Discussion and Conclusions

In this work, the eigenvalue dominance ratios, EIGDR,
of u-EGMs have been proposed and evaluated using a sim-
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Figure 1: EIGDR markers (R, RA and ∆RA) mean and
SD from the two cliques, 3×3 and 2×2, considering both
MEA orientations, 0o and 45o. γ is the factor relating the
mean from fibrotic to non-fibrotic areas for each marker
and clique size.
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Figure 2: Top panels: maps of R, RA and ∆RA from
3×3 cliques for catheter orientation of 0o. Circle encom-
passes fibrotic area. Lower panels: detected fibrotic areas
(brown), using the thresholds that maximize detection ac-
curacy of each marker. Blue (brown) color inside the circle
denotes FN (TP), while outside denotes TN (FP) detection,
respectively.

ulated atrial tissue including areas with fibrosis and others
of normal tissue, in order to discriminate them. In clini-
cal setting, bipolar voltage is commonly used as a surro-
gate of atrial fibrosis, but the phenomenon is much more
complex and voltage cannot be considered as a substi-
tute of fibrosis as assessed by MRI. Here, three different
EIGDR markers have been studied, evaluating their ability
in two possible ECA for two catheter-to-wavefront orienta-
tions and considering depolarization and repolarization of
the u-EGMs. The proposed markers are good candidates
for detecting fibrotic tissue. Results in terms of AUC and
ACC confirm the hypothesis that reducing misalignment is
beneficial and suggest ∆RA, representing the eigenvalue
dominance gain by alignment, as the better suited for fi-
brotic areas identification, especially when the 3×3 ECA
is used. However, these results need to be complemented
with other simulation configurations, such as smaller fi-

brotic areas and patchy fibrosis, as well as with real data,
where different values for the electrodes size can be tested
and the quality of tissue-electrode contact could also be
considered.
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