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Abstract

Ectopic Beats (EBs) generated from the atria or pul-
monary veins, are an important trigger mechanism of
atrial fibrillation (AF). They can be periodic, and have
been commonly observed amongst AF patients in their
initial episodes, as well as post-ablation. Robust non-
invasive detection of EBs could improve the pre-operative
prediction, as well as post-ablation management. By de-
laminating periodic components from body surface poten-
tial map using second-order statistics blind source sepa-
ration (SOS-BSS) methods, EBs were extracted, and dis-
criminated from stable AF rotors, another type of periodic
source, the area-under curve of receiver operating char-
acteristic (AUC-ROC) score of 0.92 was achieved over a
synthetic dataset of 31 rotors and 58 EBs in LA, with and
without Acetylcholine modulation.

1. Introduction

Atrial Ectopic Beats (EBs) arising from foci are an im-
portant mechanism of atrial fibrillation (AF), and have
been commonly observed amongst AF patients in their ini-
tial episodes, as well as post-ablation. Robust non-invasive
detection of EBs could improve the pre-operative planning
for pulmonary vein isolation, and the assessment of EBs
could be used for post-ablation monitoring.

Surface ECGs can be seen as sensor signals produced
by a number of unknown sources. There exists a number
of blind source separation (BSS) methods, based on as-
sumptions that each source is statistically independent to
each other, or there is some structure within the source.
Second-Order Statistics (SOS) methods exploit covariance
matrices with optimal linear predictability [1] to extract pe-
riodic sources from signals. Unlike most BSS algorithms
which require additional steps to select the optimal number

of components, they have less restriction in the selection
of components, and the components can be ranked by their
eigenvalues. Several works [2][3] adopted SOS methods
to extract periodic atrial components, assuming AF signals
over a short period exhibit quasi-periodicity, as well as to
separate maternal from fetal ECG signals [4], but none was
used to distinguish between different types of atrial peri-
odic sources.

This study used a SOS-based algorithm to to analyze
torso recordings to distinguish EBs from stable rotors, an-
other major kind of periodic source underlying AF.

2. Methods

2.1. Modelling Rotors and EBs

We modelled spatiotemporally stable rotors and regular
EBs, each lasting for 1000ms, in an anatomically realis-
tic biatrial mesh with the CARPentry simulator [5], and
computed surface potentials. The biatrial mesh was made
from a scan of an AF patient of the CHU Bordeaux, with
the addition of inter-atrial structures, as well as specifica-
tion of regional eletrophysiological properties as in [6]. We
ran monodomain simulations with lead positions shown in
Fig. 1(e-f) to compute the standard 12-lead ECG, the 252-
lead vest, and 2835-lead torso body surface potential maps
(BSPMs) for each simulation. We first applied five stimuli
at the sinoatrial node with an interval of 700ms to entrain
the heart to sinus rhythm. We used αLA, βLA, αRA, βRA

of the universal atrial coordinate system [7] to specify lo-
cation of conduction blocks (CBs) and stimulus sites on
the left atrium (LA) and right atrium (RA).

Cross-field stimulation was used to initiate rotors
(Fig. 2(a)): An S1 stimulus was first applied on an isthmus
of αLA = 0, and after 225ms, when a third of LA tissue
has been repolarised, an S2 stimulus was applied on nodes
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Figure 1: Locations for CBs (a-b), and foci (c-d). (e) Vest
leads. (f) Torso leads.

(a) Stable rotors (b) EBs without ACh

Figure 2: The transmembrane voltage of posterior LA for
simulated atrial rotor and EBs. (a) An AF rotor is anchored
around a CB (black line), where the CB is defined as a line
joining the βLA = 0.2, and αLA ∈ [0.2, 0.8]. (b) AF focus
originating from (αLA = 0.6, βLA = 0.4).

of βLA ranging 0 up to CB(βLA) ∈ {0.1, 0.2, . . . , 0.8}.
Anatomical CBs were also added on the LA, where βLA

of each CB corresponded to CB(βLA), and αLA from
0.2−0.8, 0.3−0.7, 0.4−0.6 and 0.3−0.5. Only those that
maintained stable rotors (≥2000ms) were analysed, 31 in
total.

EBs (Fig. 2(b)) were triggered every 100ms at foci of
approximately 2mm radius in the LA and RA, centered at
combinations of (α,β) where α, β ∈ {0.2, 0.4, 0.6, 0.8},
for a total of 29 simulations. We also performed simula-
tions with electrophysiological hetrogeneity by including
islands of Acetylcholine (ACh) release in the LA, includ-
ing the appendage as in [8], wherein [ACh]= 1µm.

2.2. Classification of EBs with SOS-BSS

To apply SOS-BSS methods, we assume the signals
X = {x1, x2, x3, ...} come from a number of unknown
sources S = {s1, s2, s3, ...}, so that X = WS. We first
define the cumulant matrix with a time lag τ , Cx(τ) =
E[x(t+ τ)x(t)T ]. To recover S ≈ UTW , is to maximize
the periodicity of a source Si, i = 1, 2, . . . , which is to
minimize the following measure:

ε(w, τ) =

∑
t |s(t + τ)− s(t)|2∑

t |s(t)2|
= 2

[
1− wTCx(τ)w

wTCx(0)w

]
.

The matrix column ui from U = {u1, u2, . . . } is an
eigenvector which diagonalizes the cumulant matrix. To
solve for ui, we first introduced AMUSE [9]. accord-
ing to Rayleigh–Ritz theorem, it follows that the vector
w minimizing ε(w, τ) is given by the eigenvector cor-
responding to the largest eigenvalue of the matrix pair
(Cx(τ), Cx(0)) of generalized eigenvalue decomposition.
However, AMUSE heavily relies on an accurate estimation
of the time lag τ for Cx(τ).

To estimate Cx(τ) reliably, we used SOBI [10] algo-
rithm, a generalized version of AMUSE to a large set of
time lags τ = τ1, τ2, . . . , τK , to extract periodic compo-
nents of different spectra from the BSPMs. SOBI con-
structsK cumulant matricesCx(τ1), Cx(τ2), . . . , Cx(τK),
and uses a Jacobi-like joint diagonalization (JD) method to
estimate ui for these cumulant matrices. For atrial periodic
sources (foci and rotors), we used a wide range of time lags
from 80ms to 320ms as in [2] to form the set of cumulant
matrices. The component with time lag τ̃ corresponding
to the largest eigenvalue of JD was chosen as the estimated
time lag of the principal periodic component, and was then
fed back into AMUSE by setting τ = τ̃ to compute Cx(τ).
The decomposed components by AMUSE were ranked,
again, by their corresponding eigenvalues.

As the decomposed components from AMUSE are
ranked by periodicity with time lag τ̃ , a robust way to as-
sess the periodicity of each component with time lag τ̃ was
the auto-correlation function (ACF). The first few com-
ponents have, naturally, high ACF values at time lag τ̃ ,
but for signals containing a simple periodic source such as
EBs, the lower-ranked components will still preserve a rel-
atively high ACF value at time lag τ̃ , whereas the lowest
ranked components capture the noise. We computed the



accumulated ACF (AACF) of top-ranked K components,
AACF (K) = ΣK

i=1ACFi(τ̃) where K is the number of
preserved AMUSE components, as a metric to assess the
periodicity of signals at τ̃ to classify ectopic sources.

3. Results

Typical simulations are shown in Fig.2. We decom-
posed the 12-lead ECG, 252-lead vest BSPM, and 2835-
lead torso BSPM of each simulation into different num-
bers of periodic components, and calculated their ACF and
their fast fourier transform (FFT) spectrogram. Fig. 3 show
decomposed torso ECG signals of a rotor and an EB with
homogeneous LA surface, in which the lower-ranked com-
ponents were more organised in EBs compared to stable
rotors.

The corresponding AUC-ROC values using AACF of
the top K out of total N components (5 ≤ N ≤ 9 to
account for ECG with a smaller rank (≤ 9) of cumulant
matrices) are shown in Fig. 4. We also added Gaussian
noises with standard deviation σ ∈ {0, 0.1, 0.5} on each
lead, representing zero, middle and high-level noise. The
AUC-ROC scores over all conditions are 0.87 ± 0.05, re-
spectively, and averaging the AUC-ROC and their cut-off
thresholds across all recording systems and noise levels,
the maximal AUC-ROC score is 0.90 comes from with
EBs threshold as AACF (3) ≥ 2.79.

We compared our result with the power density degree
of the dominant frequency (DF) AFFTr2DF [11], using
the ratio of integral of 0Hz to 2 × DF to the integral of
0Hz to 50Hz in the FFT spectrograms for classification,
received AUR-ROC of 0.47, 0.52, and 0.50, respectively.

The complexity for the algorithm mainly comes from
JD. On a Intel® Xeon® Gold 6140 Processor, the compu-
tation time for JD varied between 0.01 to 10 seconds for a
1000-sample ECG signal.

4. Discussions

Our algorithm achieved a maximal AUC-ROC score of
0.92 for all noise-free and medium- and high-noise condi-
tions, outperforming the FFT-based AFFTr2DF metric.
This is because DF is hard to pick, especially for complex
FFT spectrograms, and single-lead FFT-based methods are
easily corrupted by noise. By comparison, our method dis-
tinguished periodic signals from multiple leads simultane-
ously, robust to Gaussian noise for what we measured as
up to 0.5. All AUC-ROC scores in Fig. 4 converge for
K ≥ 5, and variance increased with the level of Gaussian
noise, showing the insensitivity to the number of compo-
nents.

Pairwise paired t-tests (p < 0.01) suggest that both ECG
and vest outperformed the torso for low and medium K
under medium- and high-noise settings and little differ-

ence with a high K: ECG > torso for σ = 0.1,K = 1
and for σ = 0.5,K = 1, 2, 8; vest > torso for σ =
0.1,K = 4, 5 and for σ = 0.5,K = 2; ECG > vest for
σ = 0.1, 0.5,K = 1, suggesting that the standard ECG
was sufficient, and a high K is preferable.

Future development will apply the method to patient sig-
nals and assess the correlation of EB occurence with abla-
tion outcomes, and associate the spatio-temporal pattern of
the recovered signals with the locations of EBs and rotors.

5. Conclusions

On simulations of stable rotors and regular EBs, regard-
less of the heterogeneity of LA surface, our SOS-based
method shows advantages in combining multi-lead sig-
nals to identify different types of periodic source in AF
over the single-lead FFT analysis method. The method is
easy to use, robust to Gaussian noise, and insensitive to
the number of components as well as ECG recording sys-
tems, making it suitable for low-cost pre-ablation assess-
ment and post-ablation management.
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