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Abstract

As part of the PhysioNet/Computing in Cardiology
Challenge 2020, we developed an end-to-end deep neu-
ral network model, MIC-ResNet, requiring minimal signal
pre-processing, for identifying 27 cardiac abnormalities
from 12-lead ECG data. Our team, ECGLearner, received
a score of 0.539 £ 0.114 using 5-fold cross-validation on
the full training data, and a score of 0.486 on the full test
data, and we ranked 35th out of the 100 teams who entered
the official stage that participated in this year’s Challenge.

1. Introduction

Cardiovascular diseases are the primary cause of death,
and they greatly impact daily life across all demographics.
The ECG signal is a common and important screening and
diagnostic tool for heart conditions. Different cardiovas-
cular diseases have different mechanisms, resulting in dif-
ferent ECG morphologies. Deep neural networks can learn
features of the different conditions directly from ECGs, a
large data set, and will hopefully achieve cardiologist-level
ECG recognition [1].

The PhysioNet/Computing in Cardiology Challenge
2020 focused on automated, open-source approaches for
classifying multiple cardiac abnormalities from 12-lead
ECG [2,|3]. In the challenge, we applied a novel
deep learning model called MIC-ResNet, which combines
ResNet [4] for time series and multi-instance classification
(MIC) to classify multi-center patient ECG for 27 different
conditions.

2. Methods

As shown in Fig. [1} our MIC-ResNet comprises three
major components: an encoder module based on 1D
ResNet; a multi-instance classification (MIC) module; and
a decoder module to produce an output of 27 classes going
through a sigmoid function.

The only preprocessing step that we performed was to
filter the ECG by applying a fourth-order Butterworth fil-
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Figure 1: Architecture of MIC-ResNet

ter with a pass band of 0.5 to 50Hz for each lead of each
patient signal. We did not normalize the signal, as we be-
lieved that preserving amplitude of raw ECG signal was
important for some conditions such as low QRS voltages.

2.1. 1D ResNet Encoder

ResNet [4] is the state-of-the-art deep network for mul-
tiple types of data, from images to time series [5}/6]]. There
are also a multiple of works that use 1D ResNet in classi-
fying ECG [1]. It benefits from a shortcut module, which
enables the network to go deep, whilst remaining relatively
low in complexity, thereby making the learning easier.

We used a customized 1D ResNet as an encoder to trans-
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Figure 2: Encoder module in the MIC-ResNet

form a 12-channel ECG segment of .S samples, to a lower-
dimensional (E-dimensional) embedding, adapted from
the original 2D ResNet [4]. The encoder was composed of
a 1D convolutional layer (ConvID) which took I, O as the
input and output channel sizes, and K as the kernel size,
batch normalization (BatchNorm1D) 7], a non-linear acti-
vation function (ReLU) [8]], a max pooling function (Max-
PoollD) with a kernel size of Py, and then followed by
three building blocks (ResNetBlocks), where each block
took an input signal with I input channels and produced
O output channels. The kernel sizes K7, Ko, and K3 for
the three ConvID layers in the ResNetBlocks came from
a strong baseline 1D ResNet model for time-series classi-
fication [6]. An adaptive average pooling (AdaptiveAvg-
PoollD) with output length of 1 was placed at the end, to
automatically select the stride and the kernel size in order
to produce outputs of E length-one channels.

2.2. Attention-based MIC

MIC refers to a type of classification problems in which
the data samples are instances in bags, and a label is only
available for each bag rather than for each instance. For
conditions that do not manifest themselves in a rarer event,
such as premature atrial contraction, it can be formulated
that the whole ECG recording is made of several instances,
and PAC only occurs in a subset of them. For binary clas-
sification, the MIC pooling means the probability (or la-
bel) of the bag is the maximum of the instance probability
(or label). By using a bag of K segments of .S samples
to represent a ECG recording of various lengths, we have
spanned our search range of the ECG from K samples to
K x S samples with the same encoder, without assuming

that each fixed-length segment was positive.

We adopted an attention-based MIC framework pro-
posed in [9)]. For a bag of K instances going through
the encoder, we obtained K embeddings as H =

{h1,ha,..., hi}. The MIC pooling was then
K
z = Z akhk (1)
k=1
where
exp{wT tanh VhI}
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The attention module was made of two fully connected
(FC) layers with a tanh(-) layer in the middle, where the
first FC layer was to learn the weight V € RP*F  and the
second to learn the weight w € RP*M | together with the
transpose operation and the Softmax layer, implemented
Eq @), and K was another hyperparameter to be opti-
mized. A tensor multiplier M = A x H implemented
Eq (I), and the resulting M went through a FC decoder to
produce an output of C' dimensions.

2.3. Implementation

As all patient ECGs were sampled at S00Hz, each con-
taining a varying number of at least 2500 samples, we
picked S = 3000 samples representing 6 second intervals
as the training input to the ResNet 1D, so the bag input had
dimensions of (B, K,12,S). Zeros were padded on the
end of recordings with less than S samples. To augment
the training set, we randomly sampled K instances of S
samples for a training input across the whole ECG record-
ing, whereas a validation input was composed of evenly
sampled K instances of S samples.

We represented the label of each sample as y =
[y1,Y2,.-.,yc], where C = 27 is the total number of
scored classes, and y; = 1 if class ¢ is positive and 0
otherwise. For those classes with an equivalent class, we
relabelled them as positive in an entry if their equivalent
class was positive. A multi-label stratified 5-fold cross-
validation [[10] (iterative-stratification Python package ver-
sion 0.1.6) was applied on each of the six training datasets
in Table 2 of [3]] to constitute the full training-validation
set, so that the training and the validation sets in each fold
have similar class distribution. This distribution is similar
across different folds, keeping performance stable between
different folds.

A binary cross entropy loss (BCELoss) was used as
the optimization target for the multi-label classification.
The total BCELoss was defined as the average of sam-
ple BCELoss, and for each sample of the network output



Hyperparameters Value

Segment length (.5) 3000
Number of segments in a bag (B) 5
Positive class weight (p) 2
Encoder first Conv1D and MaxPool1D (K) 7
Encoder first MaxPool1D kernel (Fp) 3
ResNetBlock kernels (K7, Ko, K3) 7,5,3
ResNetBlock input output channels see Fig
Parameter for attention (D, M) 64, 32
Smoothing term () 1

Table 1: List of hyperparameters.

x = [x1, @2, ..., xc], the BCELoss of each sample was:

c
= Zwi [py; - logo(x;) + (1 — y;) - log(l — o(ay))].
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To consider for class imbalance, the class weight for each
class 7 was defined as in [11]],
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where ¢ is the number of positive instances of class ¢, and
v is a smoothing term, a larger class weight was given to
classes with small samples, and got optimized at a higher
priority. A positive weight p = 2 was added to the
BCELoss for all classes to give a higher weight for recall
than precision.

We used PyTorch version 1.4, CUDA version 10.2. We
used the Adam optimizer [|12[] with a learning rate of 0.01,
and rescaled with a factor of 0.1 when the validation loss
reached a plateau for 10 epochs. The training stopped
when there was no reduction in the validation loss for
over 20 epochs. We used mini-batch gradient descent with
a batch size of 64. We trained on a Quadro RTX 8000
Graphic Processing Unit, and each fold stopped at around
55 epochs and three hours. After five folds were trained,
we averaged the validation loss, and computed the optimal
epoch producing the lowest averaged validation loss. We
then trained on the whole dataset for the optimal epoch.
All hyperparameters in our algorithm are summarized in
Table[Il

3. Results

We compared our results with using instance-wise 1D
ResNet composed of only the encoder and decoder in
Fig.[[] During training, one segment of S samples was
drawn randomly from ECG for each training entry and
one central segment of .S samples for each validation en-
try during training. During validation, we used the same

K instances as in MIC and made predictions for the ECG
on two mode: the First mode used the output of first in-
stance, and the Max mode used the maximal amongst the
K instances. The competition metrics (5 = 2) with the
geometric mean of geometry = ,/FgGg are shown in
Table. 2l

We calculated a multi-label confusion matrix, where its
diagonal holds the true positive rate, and the rest shows
the false positive rate. The per-class performance and the
confusion matrix of the MIC model are shown in Fig. 3]
and Fig. [}

AF 0975 0.980
AFL 0993 0.955
Brady 0992 0.970
CRBBB 0.977 0.990
JAVB 0.967 0.970
IRBBB 0.968 0.964
LAD 0.916 0.958
LANFB 0972 00982
LBBB 0.991 0.988
LPR 0.990 0.973
LQRSY 0.986 0.950
LQT 0.966 0.932

NSIVCB 0.974 0.854
NSR 0907 0970 00966 0.908 | 0.779 0.925 0.849
PAC 0953 0.863

PR 0.998 0.971
PVC 0.983  0.866
QAb 0968 0.872
RAD 0.990 0.972
SA 0968 | 0.793
SB 0970 0.979

STach 0974 0.988
TAb 0.888 0.895
Tiny 0.966 = 0.844
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Figure 3: Per-class metric over five folds
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Figure 4: Multi-label confusion matrix over five folds.



accuracy auroc auprc Fy Fy G challenge metric
MIC 0.936+0.002 0.551+0.003 0.523£0.010 0.538+0.004 0.530+0.007 0.325+0.004 0.539 £0.014
First  0.932+£0.002  0.5444+0.007 0.528 £0.006 0.519+0.001  0.506 £0.006  0.316 & 0.008 0.517 £ 0.004
Max  0.935+0.002 0.5504+0.006  0.4944+0.012  0.529+0.005 0.534+0.006 0.325+0.004 0.556+0.014
Table 2: Challenge metrics over five folds
4. Discussion and Conclusions tection and classification in ambulatory electrocardiograms

We developed a multi-label classifier for 12-lead ECGs
with an attention-based MIC, which received a score of
0.534 £ 0.113 using 5-fold cross-validation on the full
training data, and a score of 0.486 on the full test data.

In Table |2} although Max mode received the best chal-
lenge score, biasing towards recall. By aggressively se-
lecting the maximal probability, Max resulted in a low pre-
cision for auprc and Fj, whereas First received the best
auprc but the worst challenge score. On the other hand,
MIC took a balance between precision and recall, and we
believe this is important. In Fig. [3] the classifier achieved
an accuracy near to 1 in practically all cases (except for
0.888 for TADb), and auroc > 0.8. The geometry score
shows that our model works the best for AF, CRBBB,
NSR, and PR, which are all conditions exhibiting abnor-
mality in each beat, whereas the worst were mainly con-
ditions that did not occur in each beat (e.g. PVC), or had
abnormal amplitudes (e.g. Tinv), durations (e.g. LPR and
Brady), and abnormalities with multiple underlying causes
(eg. NSIVCB and QAb). In Fig. Ell the inter-class misclas-
sification occurred the most from NSR as the ground-truth,
followed by TAb to QAD, between PAC and PVC, and a
few abnormalities were mistaken as LPR and TInv.

In conclusions, we developed a deep neural network
combining 1D ResNet with MIC to predict for multiple
cardiac abnormalities from 12-lead ECG, which received
a score of 0.539 + 0.114 using 5-fold cross-validation on
the full training data and a score of 0.486 on the full test
data. Future improvements include adding more weights
in complex abnormalities, optimising the hyperparameters
in Table with cross-validation, and further data augmen-
tation with added noise.
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