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Abstract

Cardiac magnetic resonance imaging (MRI) provides
3D images with high-resolution in-plane information,
however, they are known to have low through-plane reso-
lution due to the trade-off between resolution, image ac-
quisition time and signal-to-noise ratio. This results in
anisotropic 3D images which could lead to difficulty in
diagnosis, especially in late gadolinium enhanced (LGE)
cardiac MRI which is the reference imaging modality for
locating the extent of fibrosis in various cardiovascular
diseases like myocardial infarction and atrial fibrillation.
To address this issue, we propose a self-supervised deep
learning-based approach to enhance the through-plane
resolution of the LGE MRI images. We train a convolu-
tional neural network (CNN) model on randomly extracted
patches of short-axis LGE MRI images and this trained
CNN model is used to leverage the information learnt from
the high-resolution in-plane data to improve the through-
plane resolution. We conducted experiments on LGE MRI
dataset made available through the 2018 atrial segmen-
tation challenge. Our proposed method achieved a mean
peak signal-to-noise-ratio (PSNR) of 36.99 and 35.92 and
a mean structural similarity index measure (SSIM) of 0.9
and 0.84 on training the CNN model using low-resolution
images downsampled by a scale factor of 2 and 4, respec-
tively.

1. Introduction

Cardiac MRI is the current gold standard to assess car-
diac function and diagnose various cardiovascular dis-
eases. They provide dynamic 3D images of the heart with
high-resolution in-plane information. In clinical cardiac
MRI, due to the limitations of the maximal breath-hold
time achievable by the patient, high-resolution 2D stacks
of images are typically acquired resulting in anisotropic
3D volumes of the heart. Therefore, these 3D volumes
usually have low through-plane resolution (i.e., slice thick-
ness). For example, in a typical LGE cardiac MRI, which

is widely used to assess the myocardium viability in post-
infarct patient, study the extent of fibrosis in the atria of
patients with atrial fibrillation [1], etc., has a high in-plane
resolution of 1 to 1.5 mm, but a low through-plane res-
olution of 5 to 10 mm [2]. The anisotropic 3D cardiac
MRI images results in low-resolution representation of the
cardiac anatomy, which may impose challenge in cardiac
image visualization, analysis and diagnosis [3]. This is-
sue cannot be resolved through interpolation, as it results
in artifacts such as blurring and loss of information. To
address this limitation, researchers have proposed a num-
ber of super-resolution methods, wherein they computa-
tionally enhance the resolution of an image.

In recent years, deep neural networks-based image
super-resolution algorithms have gained increased popu-
larity for enhancing the resolution of MRI images, espe-
cially in neuroimaging [4–6]. The deep learning-based
super-resolution techniques have also been successfully
applied to cine cardiac MRI images [7]. Steeden et al.
[8] demonstrated the potential of a 3D residual U-Net ar-
chitecture for super-resolution using synthetic whole heart,
balanced steady state free precession images. However, it
is hard to obtain real world high-resolution isotropic im-
ages for training such supervised models. Sander et al. [9]
proposed an unsupervised deep learning-based approach to
enhance the resolution of anisotropic cardiac MRI images.
The authors use the latent space interpolation ability of the
autoencoders to increase the through-plane resolution of
the images. Here, large variations in anatomy between ad-
jacent slices affects the performance of the method. Bustin
et al. [2] presented a novel technique to reconstruct 3D
LGE cardiac MRI images using a 3D self-similarity frame-
work. However, limited efforts have been made to explore
deep neural networks-based super-resolution methods to
improve the resolution of LGE cardiac MRI images.

In this work, we propose a self-supervised deep learning
framework to compute super-resolution LGE cardiac MRI
images. Inspired by Zhao et al. [6], this method leverages
the information learnt from the high-resolution in-plane
data to improve the through-plane resolution, eliminating



Figure 1: Self-supervised deep learning framework to improve though-plane resolution in LGE cardiac MRI

the need for external training data. We assess the perfor-
mance of the proposed method on the 2018 atrial segmen-
tation challenge dataset [10].

2. Methodology

2.1. Data

We used the 2018 atrial segmentation challenge dataset
[10], consisting of 154 3D LGE MRI volumes from 60
subjects with atrial fibrillation, acquired using either a 1.5
Tesla Avanto or a 3.0 Tesla Verio scanner. The dataset fea-
tures isotropic voxel spacing of 0.625x0.625x0.625 mm3

with spatial dimensions of 576x576x88 or 640x640x88
voxels. We use zero-padding to obtain uniform spatial di-
mensions of 640x640x88 voxels.

2.2. Self Supervised Super-Resolution

In order to generate low-resolution data for training, we
first blur the images in the x-axis to obtain low-resolution
in-plane images. This is done by Fourier downsampling
to simulate data acquisition process in MRI and to ensure
no high frequency information on the u-axis in the Fourier
domain. Now, we have the low-resolution in-plane data
and their corresponding high-resolution in-plane data to
train the CNN. This CNN model will be trained to learn
the mapping between the low-resolution and the high-
resolution data. We also repeat the Fourier downsampling
process in z-axis to obtain low-resolution through-plane
data. This low-resolution through-plane data is used as the
test dataset for our experiments.

To train the CNN model, we first extract patches of di-
mensions 640x88 pixels from the low-resolution short-axis

images in both horizontal and vertical directions. These
low-resolution patches are input to a 2D CNN, an encoder-
decoder network with skip connections (U-Net [11]). The
output of the CNN and the corresponding high-resolution
patch is used to compute a L1 loss function to backprop-
agate the CNN, thereby, learning the mapping from low-
resolution in-plane data to high-resolution in-plane data.
This mapping is subsequently applied to long-axis images
to improve the through-plane resolution (Fig. 1).

In our experiments, we split the total 154 LGE MRI
dataset to 100 for training and 54 for testing in a 3-fold
cross-validation strategy. The networks are trained using
the Adam optimizer with a learning rate of 10−4 and a
gamma decay of 0.99 every alternate epoch for fine-tuning,
a batch size of 20 patches, for 50 epochs on a machine
equipped with NVIDIA RTX 2080 Ti GPU with 11GB of
memory.

3. Results

Table 1: Mean (std-dev) peak signal-to-noise-ratio (PSNR)
and structural similarity index measure (SSIM) achieved
using bicubic interpolation and our proposed CNN frame-
work for downsampling scale factor of 2 and 4, respec-
tively. The best evaluation metrics achieved are labeled in
bold. Statistically significant differences were evaluated
using the Student t-test and are reported using * p < 0.005.

Scale Factor: 2 Scale Factor: 4
Methods PSNR SSIM PSNR SSIM
Bicubic 35.04 0.86 33.14 0.81

Interpolation (1.93) (0.03) (2.45) (0.05)
CNN 36.99 0.90 35.92 0.84

(1.91)* (0.04)* (2.73)* (0.03)*



(a) (b)

Figure 2: Comparison of (a) mean PSNR and (b) mean SSIM values achieved by bicubic interpolation and the proposed
CNN framework

(a) (b)

Figure 3: Long axis views of LGE cardiac MRI with ground-truth high-resolution (HR), (a) low-resolution (LR) with
downsampling scale factor 2 (PSNR: 27.34, SSIM: 0.61), the LR image upsampled by bicubic interpolation (PSNR: 29.93,
SSIM: 0.73) and the super-resolution image from CNN model (PSNR: 32.43, SSIM: 0.81), and (a) low-resolution (LR)
with downsampling scale factor 4 (PSNR: 23.42, SSIM: 0.48), the LR image upsampled by bicubic interpolation (PSNR:
28.38, SSIM: 0.69) and the super-resolution image from CNN model (PSNR: 31.04, SSIM: 0.79)

To evaluate our results, we compute the mean PSNR and
mean SSIM between the super-resolution long-axis images
obtained from the proposed method and the ground truth
high-resolution long-axis images. We then compare the
computed PSNR and SSIM with the results obtained by
bicubic interpolation.

Table 1 shows a comparison of the mean PSNR and
mean SSIM between our proposed method and the bicu-
bic interpolation for low-resolution images simulated by a
downsampling scale factor of 2 and 4. We achieved a mean

PSNR of 36.99 and 35.92 using our trained CNN model on
images downsampled by a scale factor of 2 and 4, respec-
tively, compared to 35.04 and 33.14, respectively, using
bicubic interpolation alone. Similarly, we achieved a mean
SSIM of 0.9 and 0.84 using our trained CNN model on
images downsampled by a scale factor of 2 and 4, respec-
tively, compared to 0.86 and 0.81, respectively, using bicu-
bic interpolation alone (Fig. 2). We show an example of
the improved through-plane resolution for low-resolution
images simulated by a downsampling scale factor of 2 and



4 in Fig. 3a and Fig. 3b, resprectively.

4. Discussion

Here, we presented a CNN-based super-resolution
framework to improve the through-plane resolution of
LGE cardiac MRI images without the need for exter-
nal training data to train the network. The CNN model
is trained to learn the mapping of simulated short-axis
low-resolution patches to their corresponding ground truth
short-axis high-resolution patches. This information learnt
from the in-plane data is used to improve the through-plane
resolution. Our experiments show significantly improved
PSNR and SSIM compared to the results obtained from
bicubic interpolation. Lastly, the resulting super-resolution
images featured less blurring and information loss than the
bicubic interpolated images.

In light of the improved through-plane resolution
achieved by the self-supervised deep learning framework
in LGE MRI, further investigation into these methods,
such as, incorporating the state-of-the-art enhanced deep
super-resolution network (EDSN) [12] into the framework
and including image similarity metrics (e.g. SSIM) in the
loss function is warranted. We will be investigating the
effect of the super-resolution LGE MRI images on down-
stream segmentation of left atrial cavity, to visualize it for
clinical usage.

As part of our future work, we will be extending this
super-resolution approach to 4D cine cardiac MRI images
and investigate its effects on cardiac motion estimation.
We will also study the effect of both, the super-resolution
LGE cardiac MRI images and the super-resolution cine
cardiac MRI images for multi-modal 3D registration.

5. Conclusion

This paper shows that the proposed self-supervised
CNN-based super-resolution framework can be used to im-
prove the through-plane resolution of LGE cardiac MRI
images.
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