Diagnosis of Reduced-lead Electrocardiograms using Autoencoders with a Shared Latent Space

H.T. Jessen, R.R. van de Leur and R. van Es
Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands

Aims This study is part of the PhysioNet/Computing in Cardiology Challenge 2021 and aims to perform automatic diagnosis of a reduced-lead electrocardiograms (ECGs) using autoencoders with a shared latent space.

Methods A deep neural network architecture using four separate encoders, one for every 12-, 6-, 3- and 2-lead dataset, was used to compress the ECGs into a latent space of 64 variables. The network consisted of 7 layers with 1-dimensional dilated causal convolutional layers. As a baseline, these four latent spaces were used as an input to a multilayer perceptron classifier for prediction of 85 diagnostic ECG statements. The networks were pre-trained on a dataset of 254,044 physician annotated 12-lead ECGs from the University Medical Center Utrecht. Training was performed on the challenge dataset and 10-fold cross validation was used for internal validation. Performance was evaluated using the area under the receiver operating curve (AUROC) and challenge score.

Results For the 12-, 6-, 3- and 2-lead datasets, the baseline cross-validated AUROC scores are 0.915, 0.908, 0.907, 0.864 and challenge scores 0.238, 0.235, 0.237 and 0.160, respectively. The official challenge scores were all 0.41 (team UMCU).

Conclusion Dilated causal convolutional encoders show good baseline performance for diagnosis of reduced lead-set ECGs. Results are comparable for 12-, 6- and 3-lead ECG, but decline with 2-lead ECGs. This approach will be further improved by introducing a single shared decoder to map the 2-, 3-, 6- and 12-lead ECGs to their corresponding 12-lead representation. By using a shared decoder, the different encoders transform the different reduced-lead input ECGs to a shared latent space. A single classifier will then be trained on this shared latent space. Assuming perfect reconstruction, this approach does not harm the 12-lead reconstruction but improves performance on the reduced-lead datasets.