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Abstract

We release a public electrocardiogram (ECG) dataset
of continuous raw signals for representation learning con-
taining 11 thousand patients and 2 billion labelled beats.
The signals were recorded with a 16-bit resolution at
250Hz with a fixed chest mounted single lead probe for
up to 2 weeks. The average age of the patient is 62.2±17.4
years. 20 technologists annotated each beat’s type (Nor-
mal, Premature Atrial Contraction, Premature Ventricular
contraction) and rhythm (Normal Sinusal Rhythm, Atrial
Fibrillation, Atrial Flutter).

To analyse this data we evaluate existing supervised
classification methods to replicate their results. We also
explore unsupervised representation learning methods to
both improve classification performance at small numbers
of labelled samples as well as identify arrhythmia sub-
types. We present a semi-supervised evaluation framework
to evaluate the quality of representation learning methods.

We achieve over 80% accuracy on beat and rhythm clas-
sification tasks using supervised models when training us-
ing large numbers of samples. In a low data setting these
supervised methods do not work as well (achieving around
40% accuracy) and the semi-supervised methods we ex-
plore only slightly improve performance. This presents
an open challenge to develop better ECG representation
learning algorithms and the dataset we release is well
suited to develop such a method.

1. Introduction

Arrhythmia detection is presently performed by cardi-
ologists or technologists familiar with ECG readings. Re-
cently, supervised machine learning has been successfully
applied to perform automated detection of many arrhyth-
mias [1–4].

However, there may be ECG anomalies that warrant fur-
ther investigation because they do not fit the morphology
of presently known arrhythmia. We seek to use a data

driven approach to finding these differences that cardiolo-
gists have anecdotally observed, which motivates the rep-
resentation learning potential of this data.

Our data is collected by the CardioSTATTM, a single-
lead heart monitor device from Icentia[5]. The raw sig-
nals were recorded with a 16-bit resolution and sampled at
250Hz with the CardioSTATTMin a modified lead 1 posi-
tion. The wealth of data this provides us can allow us to
improve on the techniques currently used by the medical
industry to process days worth of ECG data, and perhaps
to catch anomalous events earlier than currently possible.
All data is made public1.

The ethics institutional review boards at the Univer-
sité de Montréal approved the study and release of data
CERSES-19-065-D.

2. Related Work

ECG (or sometimes known as EKG) signals are col-
lected by electrocardiograph machines. These machines
traditionally have 10 electrodes, resulting in 12-lead ECG
data. These can be thought of as a 12 channel signal that
provides additional data about the heartbeat, but allows for
only short periods of data capture due to the cumbersome
nature of these machines, and are not sufficient for captur-
ing rarer events that happen over time.

One of the first open dataset of ECG signals was the
MIT-BIH dataset, created in 1979 [6]. They “expected that
the availability of a common database would foster rapid
and quantifiable improvements in the technology of auto-
mated arrhythmia analysis.” This dataset, with just 47 sub-
jects, is still in use today.

The MIMIC-III Waveform Database [7] contains 67,830
waveform records from 30,000 ICU patients. These sam-
ples are at a higher sampling rate and with more leads.
However, they are only recorded for short periods of time.
The ECG-ViEW II dataset [8] aims to be a freely avail-

1Data available: https://academictorrents.com/details/
af04abfe9a3c96b30e5dd029eb185e19a7055272

https://academictorrents.com/details/af04abfe9a3c96b30e5dd029eb185e19a7055272
https://academictorrents.com/details/af04abfe9a3c96b30e5dd029eb185e19a7055272


(a) Histogram of the duration of wear in term of samples.

(b) Histogram of age (years). (c) Patient sex.

Figure 1: (a) Demographics of the patients in the data and
statistics

able dataset of ECG records together with clinical data for
461,178 patients. Instead of raw signals, only beat infor-
mation is included: RR interval, PR interval, QRS dura-
tion, etc.

More recently, single-lead wearable devices provided
much larger amounts of data than before. As these devices
could be worn for throughout the day, over a period of a
couple of weeks, machine learning had much more data
to work with. [9] created an annotated training dataset of
ECG signals consisting of 30,000 patients [10]. The au-
thors’ approach, and the follow up work claim that their
automated models perform at the level of trained cardiolo-
gists [1]. However, their data has not been made publicly
available.

3. Icentia11k Dataset

The dataset is processed from data provided by 11,000
patients who used the CardioSTATTMdevice predomi-
nantly in Ontario, Canada, from various medical centers.
While the device captures ECG data for up to two weeks,
the majority of the prescribed duration of wear was one
week. Figure 1a shows the distribution over duration of
wear in the unprocessed data.

It should be noted that since the people who wear the
device are patients, the dataset does not represent a true
random sample of the global population. For one, the av-
erage age of the patient is 62.2 ± 17.4 years of age. Fur-
thermore, whereas the CardioSTATTMcan be worn by any
patient, it is mostly used for third line exam2, so the major-
ity of records in the dataset exhibit arrhythmias. No partic-

2Most patients were prescribed CardioSTATTMby a tertiary referral
hospital or care centre

Figure 2: ECG data at different levels of the hierarchy.
From top to bottom, a full patient record, a segment, and a
frame.

ular effort has been done on patient selection except data
collection has been conducted over years 2017 and 2018.
Figure 1c shows the distribution over age and gender.

The data is analysed by Icentia’s team of 20 technolo-
gists who performed annotation using proprietary analysis
tools. Initial beat detection is performed automatically and
then a technologist analyses the record labelling beat and
rhythm types (these will be further elaborated in §3) per-
forming a full disclosure analysis (i.e. they see the whole
recording). Finally the analysis is approved by a senior
technologist before making it to the dataset.

To further prepare the data for our purposes, we segment
each patient record into segments of 220+1 signal samples
( ≈ 70 minutes). This longer time context was informed
by discussions with technologists: the context is useful for
rhythm detection. We made it a power of two with a middle
sample to allow for easier convolution stack parameterisa-
tion. From this, we randomly select 50 of the segments
and their respective labels from the list of segments. The
goal here is to reduce the size of the dataset while main-
taining a fair representation of each patient. In the training
data, we remove the labels for 80% of the patients. For the
remaining 20%, half will be kept for the semi-supervised
task, while another half will remain as test data for evalu-
ation. Further details of nomenclature and statistics of the
unprocessed and processed data can be found in Table 1.

We describe in further detail the different levels of hier-
archy we have separated the data into:
Patient level (3-14 days) At this level, the data can cap-
ture features which vary in a systematic way and not iso-
lated events, like the placement of the probes or patient
specific noise.
Segment level (approximately 1 hour) A cardiologist
can look at a specific segment and identify patterns which
indicate a disease while ignoring noise from the signal
such as a unique signal amplitude. Looking at trends in
the segment help to correctly identify arrhythmia as half an
hour provides the necessary context to observe the stress of
a specific activity.
Frame level (approximately 8 seconds) At this level,
the data can capture features about the beat as well as the
rhythm.

While we have provided baseline results only for frame-



Table 1: Dataset Statistics

Statistic # (units)
Number of patients 11,000
Number of labeled beats 2,774,054,987
Sample Rate 250Hz
Frame size 211 + 1 = 2, 049
Segment size 220 + 1 = 1, 048, 577
Total number of frames 1,084,314
Total number of segments 542,157
Dataset Size 271.27GB

level features in this paper, we believe that processing the
data with these levels of hierarchy results in some grouping
information that could be leveraged to attain better results.

4. Baseline Methods

We replicate the convolutional ResNet neural network
of [9] on our public dataset as well as classical baselines
which operate on the raw signal. Here the models take a
frame as input and are trained to predict beat and rhythm.
The number of labelled examples in the evaluation dataset
is shown in Table 2.

We also evaluate semi-supervised classification models
which utilize the representations described in the next sec-
tion §4.1. These representations take in a frame and pro-
duce a lower dimension representation which is used by a
k-nearest neighbor classifier to make predictions. This is
done to see if these methods can utilize fewer training ex-
amples than the supervised methods as this would be de-
sirable to avoid collecting data for new tasks. The pipeline
used for these evaluations is shown in Table 3 and the re-
sults of this evaluation are shown in Table 3. Further de-
tails, code, and models have been made public in order to
facilitate reproducibility and future work3.

ECG signals

Evaluation data

ECG ECG ECG Labels 

ECG signals

Beat annotation and labels ECG ECG ECG Features

Training data

Feature extractor

Evaluation 
resultsClassification method

ECG ECG ECG ECG 

Learn feature extractor

Sample subsets Extract features

Figure 3: Diagram detailing the training and evaluation
pipeline for the representation learning task. We have vary
methods in our evaluation for the blocks colored in green.

3https://github.com/shawntan/icentia-ecg

Table 2: Label counts in the evaluation subset (patients
9000-10999). Each frame is labelled. Only 2 types of la-
bels are provided. Only these meaningful labels are used
for evaluation and presented to the classifier.

Beat labels Count
Normal 174,249
Premature Atrial Contractions 58,780
Premature Ventricular contractions 44,835

(a) Beat labels in the evaluation set

Rhythm Labels Count
NSR (Normal Sinusal Rhythm) 261,377
AFib (Atrial Fibrillation) 13,056
AFlutter (Atrial Flutter) 3,330

(b) Rhythm labels in the evaluation set

4.1. Unsupervised Representation Learning

While the processed data includes labelled beat and ar-
rhythmia information, we propose an unsupervised repre-
sentation learning challenge to the community.

The goal of this data is to develop unsupervised repre-
sentations of the ECG signal which can aid in two aspects:
1) Improving the performance of supervised tasks by using
the learned representations, and 2) Identifying unknown
subtypes of disease by studying the clustering of the rep-
resentations. While the first aspect is an immediate conse-
quence of a larger dataset, we hope the second aspect will
be of interest to researchers as well.

However, being able to find structure in the given raw
data can be subjective, so we propose a quantitative semi-
supervised classification task as a proxy for evaluating the
usefulness of extracted features. We benchmark some
common unsupervised algorithms in a semi-supervised
setting to establish base quality.

The evaluation consists of predicting the beat and
rhythm for each frame in a hold out set (samples id’s
> 10, 000). The beat task is to predict if a frame contains
all normal beats or contains at least one premature ven-
tricular contractions (PVC) or premature atrial contraction
(PAC) anywhere in a frame.

Another task is to predict the rhythm type given a frame.
For a given frame the classification method must predict if
the rhythm is normal, atrial fibrillation (AFib)4, or atrial
flutter, based on the input representation.

4AFib is a controversal rhythm as cardiologists do not agree on the
minimum duration. 8 second frames might not be sufficient to make such
a decision.

https://github.com/shawntan/icentia-ecg


Table 3: Performance using different learning models and feature representation learning methods. N/2 is the number of
labelled training examples seen and N/2 is the number of test examples evaluated. The proportion of classes in each set is
sampled to be equal. This is varied to figure out which models work at low numbers of training examples. Each experiment
is repeated using 10 different random seeds for the data split and model initialization. The mean accuracy is over all classes
is presented.

Beat Classification Accuracy Rhythm Classification Accuracy
Classification Model Feature Representation N=120 N=12000 N=120 N=12000

ConvResNet (48 layers) [9] Raw signal 0.34± 0.04 0.85 ± 0.03 0.33± 0.06 0.88 ± 0.01
Basic ConvNet (5 layer) Raw signal 0.40± 0.08 0.80± 0.01 0.35± 0.04 0.62± 0.11

Multilayer perceptron (1000 units) Raw signal 0.39± 0.08 0.69± 0.01 0.39± 0.09 0.52± 0.01
k-nearest neighbor (k=3) Raw signal 0.37± 0.04 0.65± 0.01 0.32± 0.04 0.45± 0.01
k-nearest neighbor (k=3) BioSPPy mean beat 0.33± 0.08 0.40± 0.01 0.36± 0.03 0.61± 0.01
k-nearest neighbor (k=3) ConvAE 0.42 ± 0.06 0.68± 0.01 0.33± 0.05 0.47± 0.01
k-nearest neighbor (k=3) FFT 0.39± 0.07 0.57± 0.01 0.37± 0.08 0.61± 0.01
k-nearest neighbor (k=3) PCA (50 dim) 0.38± 0.08 0.67± 0.01 0.34± 0.07 0.47± 0.01
k-nearest neighbor (k=3) Periodogram 0.36± 0.06 0.50± 0.01 0.39 ± 0.07 0.56± 0.01

5. Conclusion

Single-lead heart monitors like the CardioSTATTMare
increasingly common, and have the potential for cardiol-
ogists to learn much more about arrhythmia and related
heart diseases. However, this amount of data means that
manual analysis is no longer practical.

Supervised learning serves well as an assistant in med-
ical field; however, it hardly provides information beyond
human knowledge. Additionally, certain human body sig-
nals can be very complex and imply features that cannot
be easily identifiable manually. At present, representation
learning methods have a potential in disentangling com-
plex features, and potentially, unveil new signal structures
of certain diseases which can correlate with clinical pre-
sentations. By releasing this dataset, we believe that we
can leverage unsupervised representation learning exper-
tise to not only help to enable training models with lower
number of samples, but potentially find new diseases and
identify patterns associated with them.

We also propose an evaluation pipeline for learning a
feature extractor and evaluating extracted features using
known arrhythmia as a proxy to measure the usefulness
of the features, providing baseline results for frame-level
representations under different feature extraction methods.
Our data preparation makes a three level hierarchy avail-
able — the segment and patient level grouping of data.
While we did not provide baselines that exploit all of these
levels, future work that can take advantage of this context
to extract better representations, and perhaps, find more
interesting structure in the representation space. We also
believe that this dataset can serve as a benchmark in other
areas of machine learning, such as anomaly and outlier de-
tection, and hierarchical sequence modelling.
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