Skeletal Muscle Pump Impairment in Parkinson's Disease: Preliminary Results

Rabie Fadil¹, Asenath Huether², Robert Brunnemer¹, Andrew Blaber³, Jau-Shin Lou² and Kouhyar Tavakolian¹

¹University of North Dakota, Biomedical Engineering Research Complex, Grand Forks, ND, USA

²Sanford Brain and Spine Center, Sanford Health, Fargo, ND, USA

³Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada

Objective

The purpose of this study is to investigate if impairments in leg muscle contraction affect blood pressure (BP) regulation in patients with Parkinson's disease (PD).

Methods

Simultaneous BP, electrocardiogram, and bilateral electromyogram (EMG) of the tibialis anterior (TA), lateral and medial gastrocnemius (LG, MG), and soleus (SOL) were recorded from 16 patients (age: 64 ± 5 years) with PD and 12 (age: 68 ± 8 years) age-similar healthy controls in supine (5 minutes), head-up tilt test (15 minutes), and standing positions (5 minutes). Convergent Cross Mapping (CCM) was used to examine the causal relationship of the muscle-pump baroreflex (SBP \rightarrow EMG: systolic blood pressure producing lower leg muscle activity and the skeletal muscle-pump (EMG \rightarrow SBP: effect of muscle activity on systolic blood pressure).

Results

Preliminary results showed that PD participants have less effective lower leg skeletal muscle-pump (EMG \rightarrow SBP) compared to the control group (0.89 \pm 0.07 vs 0.94 \pm 0.04, p = 0.05) while no difference was found in the muscle-pump baroreflex (SBP \rightarrow EMG). Muscle-pump (EMG \rightarrow SBP) causality was lower for all muscles in PD patients compared to control group (MG: 0.88 \pm 0.08 vs 0.94 \pm 0.04, p = 0.02; LG: 0.89 \pm 0.08 vs 0.93 \pm 0.05, p = 0.05; TA: 0.89 \pm 0.09 vs 0.95 \pm 0.04, p = 0.05; SOL: 0.89 \pm 0.07 vs 0.94 \pm 0.04, p = 0.03).

Conclusions

Our data suggests that PD patients show reduced causal effect of skeletal muscle-pump on blood pressure. The obtained results also highlight the impairment of the ability of muscle-pump to effectively control blood pressure in PD patients. The findings of this study can assist in the development of an effective system for monitoring orthostatic tolerance via muscle-pump to prevent syncope and falls in PD.