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Abstract

In this work, we propose a novel algorithm for heart
sound segmentation. The proposed approach is based on
the combination of two families of state-of-the-art solu-
tions for such problem, hidden Markov models and deep
neural networks, in a single training framework.

The proposed approach is tested with heart sounds from
the PhysioNet dataset and it is shown to achieve an aver-
age sensitivity of 93.9% and an average positive predictive
value of 94.2% in detecting the boundaries of fundamental
heart sounds.

1. Introduction

Cardiac auscultation is a first line of assessment of the
cardiac activity that is particularly attractive for the appli-
cation in underprivileged scenarios, due to its low cost,
simplicity, and ability to detect several heart conditions [1].
Each recorded heartbeat is composed by two fundamental
sounds: the first sound (S1), that is generated by vibra-
tions of the mitral and tricuspid valves at the beginning of
the systole, and the second sound (S2), that is generated by
the closure of the aortic and pulmonary valve at the begin-
ning of the diastole.

Heart sound segmentation consists in detecting the loca-
tion and boundaries of fundamental heart sounds and, con-
sequently, systolic and diastolic intervals, in each heart-
beat. The identification of these four fundamental seg-
ments in each heart cycle plays a key role in the analysis of
the phonocardiogram (PCG), i.e., the heart sound signal, as
it allows the detection and localization of extra sound com-
ponents (e.g., the third and fourth heart sounds, murmurs,
ejection clicks, etc.) and it allows the extraction of use-
ful information from the analysis of the morphology of the
waveforms associated to the S1 and S2 sounds.

Current state-of-the art solutions for heart sound seg-
mentation can be roughly divided into two classes. The
first class leverages statistical models to include prior in-
formation about the sequential nature of PCG signals,

mainly hidden Markov models (HMMs) and hidden semi-
Markov models (HSMMs). For both models, each data
point composing a heart sound recording is mapped into
a hidden state. In particular, [2] has introduced the use of
HSMMs for PCG segmentation, which allow explicit mod-
eling of the statistics of the time spent by the system in
each state, i.e., the sojourn time. Then, other works have
improved further the performance of HSMM-based seg-
mentation algorithms, by considering a modified Viterbi
algorithm that addresses boundary conditions [3], or by
proposing methods to adapt sojourn time and emission dis-
tributions to the specificities of each PCG signal [4, 5].

A second class of segmentation algorithms is based
on the used of deep learning architectures. Deep
convolutional neural networks (CNNs) have been ap-
plied to envelopes extracted from heart sound recordings
for heart sound segmentation in [6]. Also, deep learn-
ing sequential models, namely recurrent neural networks
(RNNs), have been leveraged to segment PCG signals, by
keeping track of the temporal dependencies embedded in
a PCG signal [7]. More recent deep learning approaches
for heart sound segmentation have focused on enhancing
the capacity of deep learning models in modeling the se-
quential behavior of heart sounds. In particular, [8] has
considered the use of a bidirectional long short-term mem-
ory (LSTM) in conjunction with an attention mechanism,
which enables to identify the most salient aspect of the sig-
nal, thus providing enhanced robustness against noisy and
irregular recordings. Finally, [9] has proposed the use of a
temporal-framing adaptive network which is trained with a
specific transition loss and is able to perform dynamic in-
ference, thus adapting to irregular heart sound behaviors.

In general, recent results in heart sound segmentation
have shown that more robust results can be obtained when
highly discriminant deep learning models are accompanied
by mechanisms able to jointly take into account the semi-
periodic sequential nature of PCG signals.

In this work, we propose a novel heart sound segmen-
tation framework which combines the benefits of both
HMM-based approaches and more recent deep learning



methods. Inspired by results in automatic speech recog-
nition [10], a hybrid model-based/data-driven approach is
proposed, which incorporates the strong ability of HMMs
in modeling explicitly the semi-periodic nature of heart
sounds and the high discriminative power of deep neural
networks (DNNs). The overall hybrid model is trained
end-to-end using a gradient-based approach.

In particular, this work contains the following contribu-
tions:
1. A novel heart sound segmentation framework, based on
the joint training of a HMM and a DNN;
2. The test of the proposed method and comparison with
state-of-the-art approaches based on HSMMs [3] and deep
CNNs [6] over the PhysioNet dataset.

2. Methods

In this section, we describe the proposed approach for
heart sound segmentation, providing details about input
pre-processing, the definition of the hybrid HMM-DNN
framework, training method, and post-processing.

2.1. Pre-processing

Heart sound recordings are first filtered with a Butter-
worth filter of order two with pass-band [25, 400] Hz and
then processed with the spike removal algorithm presented
in [2]. Then, the four evnvelopes considered in [3, 6]
are extracted from the filtered signals (homomoprhic en-
velope, Hilbert envelope, power spectral density envelope,
and wavelet envelope), and normalized to have zero mean
and unit variance.

We denote with xt ∈ R4, for t = 1, . . . , T the
4-dimensional signal obtained consdiering the four en-
velopes extracted from a given PCG with length T and
with st, for t = 1, . . . , T , the corresponding state label,
where st ∈ {0, . . . , L−1} and L represents the total num-
ber of possible signal states. In this work, we consider
L = 4, where the possible PCG states are S1, systole, S2,
and diastole.

2.2. Hybrid model

Our objective is to model the PCG signal via an underly-
ing HMM whose emission probabilities are modeled via a
DNN. In contrast with previous work appeared in the liter-
ature about combining the outputs of DNNs with a HMM
[6], we define a learning strategy to jointly train the HMM
and the DNN at the same time, using a set of annotated
PCG recordings, thus allowing the sequential information
contained in the HMM to be used in the traininig phase of
the DNN.

We first define input feature maps for the DNN which
are obtained by collecting the signal vectors contained in

an observation window as follows:

ot = [xt−F , . . . ,xt, . . . ,xt+F−1] ∈ R4×2F , (1)

for some integer F .
On denoting by sT1 = [s1, . . . , sT ] and by oT

1 =
[o1, . . . ,oT ] the state sequence and the observed feature
map sequence associated to a PCG of length T , respec-
tively, we can characterize the hybrid model used for seg-
mentation in terms of their joint probability as follows:

P (oT
1 , s

T
1 ) = ps1

T∏
t=2

pst−1,st

T∏
t=1

P (ot|st), (2)

where ps1 is the probability of being in state s1 at the first
time step, pst−1,st is the transition probability from the
state visited at time t− 1 to the state visited at time t, and
P (ot|st) is the emission probability of the feature map ot

given that the signal is in state st at time t.
In order to combine a deep learning model within the

HMM framework defined by (2), we assume that a DNN
provided with an observation feature map ot generates out-
puts yt,st,Θ(ot), which are estimates of the probabilities
P (st|ot), where Θ is a vector containing the trainable pa-
rameters of the DNN. In the following, we will drop the
explicit dependence of yt,st,Θ(ot) from Θ and ot, to sim-
plify the notation.

Then, we can express the joint probability in (2) as

P (oT
1 , s

T
1 ) = ps1

T∏
t=2

pst−1,st

T∏
t=1

P (ot)

P (st)

T∏
t=1

yt,st . (3)

Moreover, the marginal probability of the observation se-
quence oT

1 is obtained by summing the joint probability in
(2) over all possible state sequences of length T , sT1 ∈ S,

P (oT
1 ) =

∑
sT1 ∈S

ps1

T∏
t=2

pst−1,st

T∏
t=1

P (ot)

P (st)

T∏
t=1

yt,st . (4)

Note that the marginal probability in (4) can be efficiently
computed using the forward-backward algorithm [11].

2.3. Training

We assume that we have access to a training set
containing N PCG recordings with the corresponding
state sequences, i.e., we have access to the set of pairs
{(oT

1 )n, (s
T
1 )n}Nn=1. Then, the objective of training is to

find the set of parameters of the model that are optimal ac-
cording to a given criterion. We denote by Ψ = [π,Γ,Θ]
the set all parameters of the model, where the vector
πT = [p0, . . . , pL−1] collects the initial state probabilities
of the underlying Markov model, the elements of the ma-
trix Γ ∈ RL×L are Γ`,`′ = p`,`′ , i.e., the state transition



probabilities of the underlying HMM, and Θ are the pa-
rameters of the DNN. We adopt the maximum mutual in-
formation (MMI) criterion for training [10], i.e., we search
for the model parameters that maximize the following ob-
jective function:

L(Ψ) =

N∑
n=1

logP
(
(oT

1 )n, (s
T
1 )n
)
− logP

(
(oT

1 )n
)
, (5)

where P
(
(oT

1 )n, (s
T
1 )n
)

and P
(
(oT

1 )n
)

are computed us-
ing (3) and (4), respectively.

The optimal model parameters are searched using a
gradient-based optimization approach.

2.4. Inference and post-processing

At inference time, PCG test signals are pre-processed
according to the steps described in Section 2.1. Then, the
trained model is applied to the features maps obtained from
the pre-processed test data and the corresponding outputs
yt,st are used to approximate the emission probabilities
P (ot|st). Finally, the output sequence of states ŝT1 is com-
puted using the Viterbi algorithm [11].

3. Experiments

The proposed hybrid HMM-DNN segmentation algo-
rithm is compared with the HSMM-based method from
[3] and the CNN-based approach of [6]. The performance
from the considered methods is tested via 10-fold cross-
validation over the available heart sound dataset, by assur-
ing that, at each iteration, sounds from patients contained
in the test set are not contained in the training set.

The DNN considered for the experiments is a simple
CNN starting with three blocks of one dimensional con-
volutions with rectified linear unit (ReLU) activation func-
tions followed by max-pooling layers. A kernel size of
3 with stride of 1 is used throughout all convolutional
layers and they stack 8, 16, and 32 filters, respectively.
The max-pooling layers have a kernel size and stride of 2.
The bottleneck features are passed through a 25% dropout
layer and fed to a single hidden dense layer of size 64 us-
ing a ReLU activation function. The output layer uses a
softmax activation function returning the estimated condi-
tional state probability densities P (st|ot) ∈ RL .

The dimension of the DNN input feature maps is F =
32. The underlying Markov model parameters π and Γ
were first estimated with a maximum likelihood approach
and then kept fixed while estimating the DNN parameters
Θ. These are obtained by maximizing the objective func-
tion L(Ψ) using the Adam algorithm [12] , with learning
rate 10−4. The maximum number of epochs for training is
fixed to 50, and early stopping is implemented by extract-
ing 10% of the training data for validation and retaining

the network weights corresponding to the model that guar-
antees the highest validation accuracy among all epochs.

The performance of the considered segmentation algo-
rithms in determining the position of the fundamental heart
sounds S1 and S2 is evaluated in terms of their sensitivity
(S) and positive predictive value (P+). Such metrics are
computed according to the description in [2], where true
positives are counted when the mismatch between the cen-
ter of a sound in the estimated sequence and in the ground
truth sequence is lower than 60 ms. All performance met-
rics are computed for each recording in the test set and then
averaged over the test set. Finally, the values correspond-
ing to the different 10 test subsets are reported.

The heart sounds used for the experiments were taken
from the dataset made publicly available for the Phys-
ioNet/CinC challenge 2016. In particular, we considered
792 heart sounds recorded from 135 patients in differ-
ent clinical and non-clinical environments.1 From those,
181 sounds are collected from patients with pathological
heart lesions (most commonly mitral valve prolapse), as
assessed by echocardiography. The remaining 246 sounds
are collected from healthy patients. Sound recordings are
sampled at 1 kHz. The annotations provided with the
dataset are obtained from the analysis of synchronous ECG
recordings.

In Fig. 1 are reported the values of sensitivity (S) and
positive predictive value (P+) for the proposed method
and the algorithms in [3] and [6]. It is possible to note that
the proposed methods slightly outperforms the segmenta-
tion algorithms considered for comparison both in terms of
sensitivity and positive predictive value. These results can
be explained by the enhanced capability of the proposed
hybrid model in embedding explicitly domain knowledge
regarding the sequential nature of the PCG signal when
compared to the application of a CNN classifier followed
by Viterbi decoding.

Such behavior can be observed in the segmentation ex-
ample reported in Fig. 2, where it is possible to observe
that early embedding of the HMM in the CNN training
allows to avoid segmentation errors leading to output se-
quences with reduced physiological significance, charac-
terized by exaggeratedly long or short diastolic periods.

4. Conclusion

In this paper, a hybrid model-based/data-driven ap-
proach for heart sound segmentation was presented. The
proposed framework consists in the joint training of a
HMM, able to explicitly embed sequential information
about heart sound states, and a highly discriminative DNN,
via a mutual information maximization criterion.

1The sounds are available online at
https://PhysioNet.org/physiotools/hss/.
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Figure 1. Sensitivity (S) and positive predictive value
(P+) of the HSMM-based method in [3] (blue, left), CNN-
based method in [6] (red, center), and proposed method
(green, right).
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Figure 2. Segmentation example reporting the values of
the ground truth state sequence (blue, dotted line) and the
output sequences of the CNN-based approach in [6] (red,
dashed line) and the proposed approach (green, solid line).

The proposed approach is shown to provide segmenta-
tion performance superior to current, more complex CNN
architectures and HSMM approaches. This is motivated
by the high flexibility of the hybrid model in striking a bal-
ance between explicit sequential modeling and discrminia-
tive power.

Acknowledgements

This work is funded by FCT/MCTES through na-
tional funds and when applicable co-funded EU funds
under the project UIDB/50008/2020. This work is
also a result and funded by the projects: DigiS-
cope2 (POCI-01-0145-FEDER-029200 - PTDC/CCI-
COM/29200/2017), funded by Fundo Europeu de Desen-
volvimento Regional (FEDER), through Programa Opera-
cional Competitividade e Internacionalização (POCI), and

UID/EEA/50008/2019. The work of F. Renna is also
funded by national funds through FCT - Fundação para a
Ciência e a Tecnologia, I.P., under the Scientific Employ-
ment Stimulus - Individual Call - CEECIND/01970/2017.

References

[1] Mendis S, Puska P, Norrving B, Organization WH, et al.
Global atlas on cardiovascular disease prevention and con-
trol. World Health Organization, 2011.

[2] Schmidt S, Holst-Hansen C, Graff C, Toft E, Struijk JJ.
Segmentation of heart sound recordings by a duration-
dependent hidden Markov model. Physiological measure-
ment 2010;31(4):513–529.

[3] Springer DB, Tarassenko L, Clifford GD. Logistic
regression-HSMM-based heart sound segmentation. IEEE
Transactions on Biomedical Engineering 2016;63(4):822–
832.

[4] Oliveira J, Renna F, Coimbra MT. Adaptive sojourn time
HSMM for heart sound segmentation. IEEE Journal of
Biomedical and Health Informatics 2019;23(2):642–649.

[5] Oliveira J, Renna F, Coimbra M. A subject-driven unsu-
pervised hidden semi-Markov model and Gaussian mixture
model for heart sound segmentation. IEEE Journal of Se-
lected Topics in Signal Processing 2019;13(2):323–331.

[6] Renna F, Oliveira JH, Coimbra MT. Deep convo-
lutional neural networks for heart sound segmentation.
IEEE Journal of Biomedical and Health Informatics 2019;
23(6):2435–2445.
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