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Abstract

Our goal was to develop an automatic classification
algorithm to differentiate between four common lesion
types in atherosclerotic (AS) arteries: calcific (CAL),
fibro-calcific (FBC), fibrous (FBR), and fibro-fatty
(FBF). AS was induced in eight Yucatan miniswine. 22
femoral or carotid arteries were imaged with intra-
vascular ultrasound using a pull-back procedure. Both
2D ad 3D texture measures were used, followed by a
principal components analysis to reduce dimension. The
classifiers were applied to the test dataset, and the results
were compared with two independent experts. There was
no difference between the 2D and 3D classification of the
CA and E1, and of the CA and E2 (ANOVA, F=2.00). The
difference between CA and El (or E2) was not larger
than the difference between E1 and E2 for any lesion type
(ANOVA, F=0.76). We conclude that using 3D
information in the classification scheme improved the
algorithm’s ability to correctly classify lesion type.

imaging has had some success at discriminating the
components of the lesions; however structural resolution
is presently not good enough to visualize the extent and
composition of atherosclerotic plaques, especially in
coronary arteries. Electron-beam computed tomography
is highly sensitive in detecting coronary artery
calcification in comparison with other modalities, but it is
limited to the detection of calcific plaques. Optical
coherence tomography (OCT) has an advantage over
other modalities in that it can image components of
plaque at a resolution that other modalities cannot
achieve, but it is not widespread in its clinical use. It also
has a limited depth of penetration so although it may
provide excellent images, it doesn’t give information
about deeper structures. Structures deep within arterial
walls can best be visualized by intravascular ultrasound
(IVUS).

2. Methods
2.1. Animal preparation and data
—— collection - [

1. Introduction

Atherosclerosis is a disease that affects people of any
age and is characterized by the narrowing of arteries due
to the progressive thickening of deposits within the lining
of the arterial wall. It is the leading cause of death in the
western world, and is predicted to continue to be the
leading cause of death within the first quarter of the next
century. It is estimated to cost over $100 billion dollars
annually in health care [3].

It is often difficult for clinicians to accurately
determine the type and morphology of the atherosclerotic
plaque or lesion within an arterial wall. This is especially
so for fibrous and fibro-calcific lesions [2]. Our goal was
to develop an automatic classification scheme to
differentiate between four types of atherosclerotic
lesions: calcified (CAL), fibro-calcific (FBC), fibrous
(FBR), and fibro-fatty (FBF).

Conventional methods such as planar angiography and
X-ray are not capable of describing the different types of
lesions present in the artery. Modern magnetic resonance
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" "Animal  (Yucatan miniswine pigs) experiments,
undertaken at Northwestern University, Chicago, Illinois,
involved two series of studies. In one series, the animals
underwent an initial surgical procedure to place markers
on the carotid and iliofemoral arteries. The animals were
then allowed to recover and fed a hypercholesterolemic
diet for 12 months. After 12 months the animal
underwent a terminal surgical study during which time
IVUS images were acquired. In a second series both
carotid and iliofemoral arteries were exposed and
markers placed under initial sterile surgery. The animals
underwent percutaneous angioplasty to denude the
endothelium of one carotid and one iliofemoral artery
chosen randomly. This allowed active plaque
development consisting of fatty, fibrous and subsequent
fibrocalcific components. Following surgery the
hypercholesterol diet regimen continued and the animals
were evaluated at different times during the study.
Pull-back sequences of two-dimensional (2D) IVUS
images of twenty-two (22) highly diseased arteries were
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single lesion type identified by an expert that is three-
dimensionally connected. For complex lesions comprised
of more than one lesion type, the individual lesion
components were separated and considered as separate
lesions.

Some IVUS images of the arteries were acquired 1
year after the start of the experiment where the pigs were
fed a high-fat diet with no prior arterial denudation, while
other IVUS images of the arteries were obtained 2
months after the start of the same diet regimen, but with
prior arterial denudation. An average of twenty-one (21)
physical image slices were acquired of each artery at 1
mm intervals using an UltraCross 30 MHz Coronary
Imaging Catheter (3.2F or S5F) from Boston Scientific
SciMed, Maple Grove, MN. The constant velocity pull-
back rate was 0.5 mm/s and the image resolution was 0.1
mm in the axial and lateral directions. Image slice
thickness was 1 mm in the axial direction. At each
physical slice, images was acquired at the ¢, s, i and ¢
points of the EKG cycle resulting in an average total of
84 time slices per artery. The i point in the EKG cycle
was defined as the equi-potential point, i.e. just after the
QRS complex where the potential returns to its original
level (pre-QRS level). Image slices were arranged in the
same ¢, s, i and ¢ sequence from the first image slice
acquisition to the end of the pull-back sequence, prior to
application of the texture measures.

The images were randomly divided into a training set
(8 arteries), and a test set (14 arteries) to develop (test set)
and test (training set) the performance of the automatic
classification algorithm. The number of arterial lesions
in each set is shown in Table 1. The classifiers were
based either on two-dimensional (2D) or three-
dimensional (3D) calculations.

Table 1 — Number of lesion types in the training
and test sets from 22 arteries

2.2,  Classification algorithms

The following texture features were used to applied to
the segmented lesions [6] -- First-order statistics: mean,
variance, skewness, kurtosis; Second-order statistics:
short run emphasis, long run emphasis, gray level non-
uniformity, runlength non-uniformity, run percentage;

distance 4 along a direction ¢): angular second moment,
contrast, correlation, co-occurrence variance, inverse
difference moment, sum average, sum entropy, sum
variance, entropy difference, variance difference, entropy
information measure of correlation 1, information
measure of correlation 2, maximum probability.
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Figure 1 — Experimental Methods Flowchart.

Principal components analysis (PCA) was then used to
determine the best combination of variables that would
account for at least 95% of the variation in the texture
variables [6]. PCA involves the selection of a set of
weights such that the variance of the linear composite is a
maximum. The goal is to choose a small number of linear
composites that would provide 95% of the information
residing in the larger set of original texture variables.
PCA produces an orthogonal coordinate system in which
the axes are ordered in terms of the amount of variance in
the original data for which the corresponding principal
components account. If the first few principal
components account for most of the variation, then the
dimensionality of the problem is reduced and the texture
variables with the highest discriminatory power to
distinguish between the four types of lesions are found.

The classification algorithm was applied to both the
standard 2D texture measures (2D classifier) and 3D
texture measures (3D classifier) based on a new way of
calculating the co-occurrence matrix. In the 3D case, the



computed from the new co-occurrence matrix.

2D and 3D textures measures were computed for all of
the lesions in the training set and the resulting values
submitted to the PCA procedure. Thus after applying the
PCA procedure, redundancy and complexity were
reduced by reducing the dimension space to seven. As a
consequence, the PCA provided a smaller relevant set of
texture measures that contained the most discriminatory
information between lesion types. Figure 1 illustrates
the data analysis procedure.

2.3.  Statistical analysis

~ To ‘evaluate the performance of the classifiers, we
compared the classifiers outputs with the 2 independent
experts’ classifications. Inter-operator variability was
determined to assess whether the classifiers performance
was as good as the difference between the two
independent experts. The statistical comparison involved
computing Kappa statistics, and performing a one-way
analysis of variance (ANOVA) (level of significance of a
= 0.05) between the 2 classifiers, the 2 experts. To
further demonstrate the performance of the classifiers,
confusion matrices were tabulated [5]. Confusion
matrices contain information about actual and predicted
classifications performed by a classification system. It
shows not only how well the model predicts, but also
presents the details needed to see exactly where things
may have gone wrong.

Kappa is a measure of agreement between observers.
It compares the agreement against that which might be
expected by chance. If there is complete agreement, then
k = 1. If observed agreement is greater than or equal to
chance agreement, k > 0, and if observed agreement is
less than or equal to chance agreement, k <0 [5].

3. Results

There was no difference between the 2D and 3D
classification of the computer algorithm (CA) and the
first expert (E1), and of the CA and the second expert (E2
- ANOVA, F=2.00).

Table 2 — Confusion matrix for Expert 1 and
Expert 2. The lesion types are fibro-fatty (FBF),
fibrous (FBR), fibro-calcific (FBC), and calcified
(CAL).

.
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5 0 0 0
4 1 1 0
1 8 11 0
0 0 7 0

The dlfferégée between CA and El1 (or E2) was not

increased when using the 3D CA (0.94, 0.81-1.06).
Similar results were found when comparing CA with E1.

Table 2 shows the results (displayed as a confusion
matrix) obtained from both experts. The data indicate’
that there was good agreement for FBF lesions, but there
was some disagreement about the classification of FBR
and FBF lesions, and FBC and CAL lesions.

Table 3 — Confusion matrix for 3D classifier
comparing the classifications from the computer
algorithm (CA) and the first expert (Exp1).
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Table 4 — Confusion matrix for 3D classifier
comparing the classifications from the computer
algorithm (CA) and the first expert (Exp2).
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Figure 2 - Percent classification match for each
lesion type in the 3D test set for the 3D classifier
(COMP), where both experts agreed on the lesion
type.

Table 3 shows a comparison of the results obtained
from the computer-based 3D classification algorithm
with the results of the classification of the first expert.
Table 4 shows the same comparison but with the second
expert.
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4, Conclusions

We conclude that using 3D information in the
classification scheme improved the algorithm’s ability to
correctly classify lesion type. The CA was able to
correctly differentiate between FBR and FBC. Kappa
statistics indicate moderate agreement for both classifiers
versus either of the two experts. Mean values for the 3D
classifier [0.36 - 0.68] were slightly higher than the 2D
classifier [0.27 - 0.61]. This indicates slightly more
agreement between the 3D classifier and the two experts
and a better classification performance by the 3D
classifier. The one-way ANOVA test for both classifiers
indicated no statistical difference (p > 0.05) for the 3D
“classifier versus the experts, while there was a statistical

difference between the 2D classifier and the experts. This

means that classifications by the 3D classifier would be
no different from those by either expert, while the 2D
classifier would produce significantly different lesion
classifications when compared to the experts.

The tabulated confusion matrices and their associated
plots for the 3D classifier show the percent classification
matches for the classifiers versus each expert within each
lesion type for the test sets. We desire to have the
classifier classifications match the expert classifications
which would be represented by a diagonal confusion
matrix (all zeros in the off-diagonal entries). However, it
was more reasonable to expect a large number of lesion
matches along the diagonal compared with the total
number of lesions in each lesion type and a smaller
number of mismatches off the diagonal. Overall, we
observed that the experts had < 60% classification match
for each lesion type for all the lesions in the test set with
each other, but if we only tabulated percent classification
match when the experts agreed, the rate was > 91% for
the 2D classifier and >86% for the 3D classifier. Overall
the confusion matrices and plots of the classifiers versus
the experts indicated that they compared favorably.

We have developed a method of classifying the entire
3D lesion based on the individual 2D slices that compares
favorably with two independent experts. Our method
takes advantage of the spatial interdependencies along the
length of the lesion by computing 3D co-occurrence
texture measures from a new co-occurrence matrix and
combining them with previously developed 2D texture
measures to further improve the lesion classification rate.
This method had smaller lesion classification error rates
in comparison with the classifications from the 2D
classifier.

need to be able to discriminate the lesion types into more
categories that would assist a clinician’s ability to
prescribe the appropriate interventional or therapeutic
procedure for the patient. We were able to discriminate
between four lesions types and correlated well with the
two independent experts with an independent lesion test
set using a 3D classifier.
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