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Abstract

We address the challenge of distinguishing physiologic
interbeat interval time series from those generated by
synthetic algorithms via a newly developed multiscale
entropy method.  Traditional measures of time series
complexity only quantify the degree of regularity on a single
time scale. However, many physiologic variables, such
as heart rate, fluctuate in a very complex manner and
present correlations over multiple time scales. We have
proposed a new method to calculate multiscale entropy
from complex signals. In order to distinguish between
physiologic and synthetic time series, we first applied
the method to a learning set of RR time series derived
from healthy subjects. We empirically established selected
criteria characterizing the entropy dependence on scale
factor for these datasets. We then applied this algorithm
to the CinC 2002 test datasets. Using only the multiscale
entropy method, we correctly classified 48 of 50 (96%) time
series. In combination with Fourier spectral analysis, we
correctly classified all time series.

1. Introduction

Heart rate variability is the output of multiple physiologic
control mechanisms that operate on a wide range of time
scales. As a result, cardiac interbeat (RR) time series
under healthy conditions have a complex temporal structure
with multiscale correlations [1, 2]. In contrast, synthetic
time series are most likely the output of simpler dynamical
systems, and therefore, will be anticipated to have less
complex temporal structures than their “true” biologic
counterparts.

Classical entropy and physiologic complexity concepts
do not have a straightforward correspondence. Entropy
is related to the degree of “randomness” of a time series
and it is maximum for completely uncorrelated random
signals. Complexity is related to the underlying structure
of a time series and its information content. An increase
of the entropy assigned to a time series usually, but not
always, corresponds to an increase of underlying system
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complexity. Entropy-based algorithms [3, 4] for measuring
the complexity of physiologic time series have been widely
used. They have proved to be useful in discriminating
between healthy and disease states [5, 6], although some
results may lead to misleading conclusions. For example,
the entropy that these algorithms assign to time series
derived of the ventricular response in atrial fibrillation is
much higher than that assigned to sinus rhythm time series
derived from healthy subjects. However, healthy systems
generate much more complex outputs than diseased ones.
Traditional algorithms are single-scale based and therefore
fail to account for the multiple time scales inherent in
physiologic systems. We have proposed a new method
[7] to calculate multiscale entropy (MSE) from complex
signals.

In 1991, Zhang [8, 9] proposed a new complexity
measure applicable to physical systems. His measure,
defined as a weighted sum of scale-dependent entropies,
has the desirable property of yielding higher values for
correlated noises than for uncorrelated ones. However,
since it is based on Shannon’s definition of entropy, it
requires a huge number of almost noise-free data points
[10].  Therefore, the possibility of applying Zhang’s
measure to real world biologic time series is very limited.
In contrast, our related method is based on the approximate
entropy (ApEn) family of parameters, which have been
widely applied to physiologic and medical time series
analysis [3].

2. Methods

We briefly describe the MSE method.

Given a time series, {z1,...,%;,...,ZN}, we first
construct consecutive coarse-grained time series by
averaging a successively increasing number of data points
in non-overlapping windows (Figurel). Each element of the

. . . ‘r) . .
coarse-gained time series, y; °, is calculated accordingly to
the equation:
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Figure 1. Schematic illustration of the coarse-graining
procedure for scales 2 and 3.

where 7 represents the scale factor and 1 < j < N/7. For
scale 1, the coarse-grained time series is simply the original
time series.

Then, we calculate sample entropy (SampEn) [4], a
refinement of the original ApEn statistics [3], for each
coarse-grained time series plotted as a function of the scale
factor .

The MSE method applied to white and 1/f noises, i.e.,
uncorrelated and correlated fluctuations (Figure 2), shows
that for scale 1 the entropy for white noise is much higher
than for 1/ f noise [7]. However, while the entropy for 1/ f
noise remains almost constant for all scales, the entropy for
white noise monotonically decreases with scale such that,
for scales larger than 4 it is lower than the entropy for 1/ f
noise. This result is consistent with the fact that, unlike
white noise, 1/f noise contains structures across multiple
time scales.

The MSE method applied to the cardiac interbeat
interval time series derived from young and elderly healthy
subjects, subjects with congestive heart failure (CHF) and
subjects with atrial fibrillation (AF), reveals that complexity
degrades with disease and aging [7]. For scale one, AF
times series are assigned the highest entropy value and CHF
time series and time series derived from healthy subjects
are assigned similar entropy values. However, for larger
time scales, we verify that: a) the entropy for AF time
series monotonically decreases similar to white noise, and
for scales larger than 10 is lower than the entropy assigned
to times series derived from healthy subjects; b) the entropy
for CHF time series is lower than that for time series
derived from healthy subjects on all time scales but the first
one. In addition, the poorest separation between young and
elderly healthy subjects occurs for scale one, the only scale
that is traditionally studied. Therefore, MSE results are
compatible with the concept that youthful healthy systems
are the most complex ones.

In order to distinguish between the physiologic and the
synthetic time series made available for the CinC 2002
challenge, we first applied the MSE method to a training
set of cardiac interbeat interval time series derived from 20
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Figure 2.  MSE analysis of Gaussian distributed white

noise (mean zero, variance one) and 1/f noise. On the
y-axis, the value of sample entropy (SampEn) [4] for the
coarse-grained time series is plotted. Parameters are: N =
3 x 10% data points, m = 2 and r = 0.15. The scale
factor specifies the number of data points averaged to obtain
each element of the coarse-grained time series. Symbols
represent results of simulations and dotted lines represent
analytic results. SampEn for coarse-grained white noise
time series, is analytically calculated by the expression:
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(for any m > 1). 7 and erf refer to the scale factor and to
the error function, respectively. r is defined in Ref. [3].
For 1/ f noise time series, the analytic value of SampEn is

a constant. Adapted from Ref [7].

healthy elderly subjects, 10 males and 10 females (mean
age+SD, 69 + 3 years), and 20 healthy young subjects, 10
male and 10 female (mean age£SD, 32 £ 6 yr). Then,
we empirically established selected criteria characterizing
the entropy dependence on scale factor for these healthy
subjects. Next, we applied the algorithm to the CinC 2002
test datasets.

3. Results

In Figure 3 we present the results of the MSE method
for the training set that includes 20 healthy elderly subjects
(mean age+SD, 69+ 3 years) and 20 healthy young subjects
(mean age+SD, 32 £ 6 years). Two types of curves are
characteristic of healthy systems. For young subjects,
the entropy for coarse-grained time series increases up to
approximately time scale 5 and then stabilizes for larger
time scales. For elderly subjects, entropy for coarse-
grained time series initially decreases slightly and then
progressively increases. For larger time scales it tends to
stabilize. Using this training set we defined the range of
physiologically meaningful entropy values. The upper and
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Figure 3. MSE analysis of the cardiac interbeat time series
derived from 20 healthy young subjects and 20 healthy
elderly subjects. Values are given as means =+ standard
error. Parameters for calculating SampEn are m = 2,
r = 0.15and N = 3x10%. For all time scales, the values of
entropy for coarse-grained time series obtained from elderly
subjects are significantly (p < 0.005; t-test) lower than
those from young subjects. The poorest separation between
groups is obtained for scale one, indicating the importance
of calculating entropy over different scales. Adapted from
Ref. [7].

the lower limits of this range are set as mean value £25D,
respectively. MSE curves with similar patterns to those
presented in Figure 3 and for which the entropy values
are within the range defined by the physiologic intervals
were considered as belonging to physiologic time series. In
all other cases, the MSE curves were considered to have
derived from synthetic time series.

We applied the MSE method to all CinC 2002 datasets.
Results are presented in Figures 4 and 5. For easier
interpretation of the results, these figures include also the
mean values (symbols) and SD (error bars) of entropy for
coarse-grained time series derived from our training set.
(Instead of considering the results for young and elderly
subjects separately, as in Figure 3, in Figures 4 and 5 mean
values were calculated by pooling both sub-groups.)

The patterns of all MSE curves included in Figure 4 are
similar to those presented in Figure 3. In addition, entropy
values are within the limits defined by the physiologic
range. Therefore these curves were identified as belonging
to physiologic time series.

In Figure 5, top panel, we present all MSE curves in
which the entropy monotonically decreases for more than
7 consecutive time scales. This pattern it similar to the one
obtained with white noise, in which case the entropy is a
monotonic decreasing function of the scale factor (Figure
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Figure 4. MSE results for time series from CinC

2002 Challenge identified as physiologic. Parameters for
calculating SampEn are m = 2,7 = 0.15and N = 4 x 10%.
Symbols and errors bars refer to mean and SD values of
MSE results obtained with the training set considering both
young and elderly healthy subjects.

2). The results suggest that all these time series have a
common underlying random structure and therefore were
classified as synthetic.

In the bottom panel of Figure 5, we present the remaining
MSE curves. For all these curves one or both of the
following two situations occur: a) the entropy for at least
one coarse-grained time series is out of the physiologic
range; b) the entropy monotonically increases for large
time scales defining a pattern not yet found for healthy
physiologic systems. These curves were also classified as
synthetic.

With the MSE method, 20 out of 22 synthetic time series
and 28 out of 28 time series derived from healthy subjects
were correctly identified, which yields a 96% success rate.
(Two time series not identified by the MSE method could
be excluded from the physiologic group based on the fact
that their power spectra display a pure 1/f decay without
any physiologic peak.) Comparable separation could not be
achieved with traditional (single-scale) entropy measures.
For example, the values of SampEn for 11 synthetic time
series (scale 1 of Figures 4 and 5) overlap with those
measured for time series derived from physiologic systems
(scale 1 of Figure 3).

4. Conclusions

MSE analysis has been proposed to quantify the
complexity of physical and physiologic time series. We
previously applied MSE to correlated and uncorrelated
noises and to physiologic time series under healthy and
pathologic conditions [7].  Using the MSE method,
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Figure 5. MSE results for time series from CinC
2002 Challenge identified as synthetic. Parameters for
calculating SampEn are m = 2, r 0.15 and N
4 x 10%. For ease of visualization, results are grouped in
two panels. Symbols and error bars represent mean and SD
values of MSE results obtained for our training set which
includes both young and elderly healthy subjects. In the
top panel, 10 MSE curves are presented in which entropy
for coarse-grained time series monotonically decreases for
several time scales. In the bottom curve, all other time
series identified as synthetic are presented. For all these
MSE curves, entropy values either lie outside the defined
physiologic range or monotonically increase for larger time
scales.

correlated 1/f noise consistently shows higher complexity
than white noise. Further, the complexity of heartbeat
time series degrades with aging and disease. This finding
is compatible with the unifying concept that physiologic
complexity is fundamentally related to the adaptive capacity
of the organism, requiring integrative and multiscale
functionality. Finally, when applied to the CinC 2002
contest, the MSE method correctly identified the origin of
48 out of 50 time series. The MSE method seems to have
the capacity to distinguish between time series generated by
different mechanisms. Furthermore, it may be applied to a
wide variety of other physiologic and physical time series.
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