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Abstract 

Daytime heart rate variability synthesis is proposed 
based on the assumption of multiplicative cascade. The 
parameters of the cascade were extracted from healthy 
RR intervals (RRi) to generate the synthetic data which 
reproduce some of the known HRV phenomenology, such 
as the multifractal scale invariance, stretch exponential–
exponential–gaussian increment distribution transition 
from small to large increments, and Poisson excursion in 
small RRi fluctuation. However, this model only tackles 
the broad-band 1/f-like fractal component of HRV. 
Narrow-band components such as the respiration were 
not considered. 

 
1. Introduction 

The random fluctuation of the interbeat time (RRi) 
interval reveals the complex cardiovascular dynamics in 
humans. RRi has been widely studied by its power 
spectrum, which is known to consist of a narrow-band 
harmonic component and a broad-band fractal component 
[1]. In long-term HRV, the fractal component accounts 
for a large percentage of the total RRi signal power. 
Although its origin and physiological function of remain 
largely unclear, experimental data suggest that the HRV 
fractal component represents a vital factor as the deficit of 
the fractal characteristic implies a higher mortality rate in 
a number of heart disease conditions [2]. 

 
The proposed model is motivated by the finding of 

multifractal in healthy daytime RRi records [3, 4]. The 
potential of using multiplicative cascade to model the 
generating mechanism of HRV was thus raised [4]. For 
the CINC 2002 challenge, a random bounded cascade on 
the dyadic scale is developed to model (only) the fractal 
component in long-term HRV. The synthesis implies a 
multifractal inverse problem to define the cascade based 
on the experimental RRi data. In this study, we used the 
log-increment of the RRi to achieve the parameter 
identification for the cascade. The synthetic RRi so 
produced is able to exhibit some of the crucial statistics of 

healthy daytime HRV. 
 
This paper is organised in five sections.  The bounded 

cascade model and parameter estimation are explained in 
Sec. 2 and 3 respectively. In Sec 4, the experimental and 
simulation results are given. Concluding remarks are  
given in Sec 5. 

 
2. Bounded cascade 

Random cascade can be generally put in the 
framework of positive martingale theory [5]. In 
construction, it consists of three basic elements: the 
multiplicative data generation rule, the probability law of 
the cascade component and the branching rule. Let rJ(t) 
denote the synthetic RRi between the tth and (t+1)th beat. 
The cascade HRV assumes the random phenomenon is a 
result of the product of J cascade components: 
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The cascade component can be written as ωj(t) = 1+ξj 
where ξj, j = 1, …, J are independent gaussian variables 
(in j) with <ξj> = 0, <ξiξj> = δijσj

2 (δij is the Kronecker 
delta). Our experience with other distributions does not 
indicate qualitatively different results. A bounded rJ(t) is 
imposed based on the refractory property of the heart 
muscle cells [6]. For finite cascade J < ∞, this is achieved 
since {sup |ωj(t)| < ∞ } holds almost surely. However, we 
like to assume a stronger condition to assure boundedness 
even in the J → ∞ limit. Motivated by the deterministic 
bounded cascade [7], a power law decay in the 
component variance is imposed: )1(

0 2 −−= j
j
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σ0 and α are constants to be determined. Intuitively, the 
decreasing σj creates a damping effect by the small time 
scale components to prevent rJ(t) from reaching 
unbounded values in the J → ∞ limit. As a result, a large 
amplitude jump in the small time scale component 
becomes less likely, making the large time scale 
component the leading factor for large scale fluctuation in 
rJ(t). The range of healthy and diseased HRV applies to 
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the parameter space σj < 1. For σj > 1, the simulated data 
is too “intermittent” to be considered for HRV. 

 
In addition to the gaussian assumption and the decaying 
variance, ωj(t) is further set to vary only on discrete times 
{tk

(j)}: ωj(t) = ωj(tk
(j)) for tk

(j) ≤ t < tk+1
(j). The time set {tk

(j)} 
is designed to provide the self-similarity in the data 
fluctuation and thus defines the branching rule for the 
cascade. In this work, dyadic time scales were used: tk

(j) = 
kN/2

j
, k = 1, …, 2

j
 where N = 2

J 
is the number of data 

points. Notice that the number of the elements of  {tk
(j)} is 

an increasing function of j. Hence, the ωj(t) for small j 
can be referred to as the large time scale component and 
is said to give rise the “slow dynamics.” Similarly, the 
ωj(t) of large j is referred to as the small time scale 
component which gives rise to the “fast dynamics.” In 
this view, it is tempting to relate the “slow” and “fast” 
dynamics of the cascade to the sympathetic and 
parasympathetic nervous system activities. Such a 
connection was recently tested and consistent results with 
the experimental observations reported in the past were 
found [4, 8]. 
    
3. Parameter estimation 

α and σ0 in σj are the two model parameters that need 
to be extracted from the experimental RRi to simulate the 
fractal component of HRV. In what follows, we will 
present a procedure to estimate these parameters. After 
they are determined, we then check the scaling of the 
increment, <|∆rJ(τ)|q> ∼ τζ(q) where ∆rJ(τ) = rJ(t + τ) – 
rJ(t), to verify the generation of multifractal and other 
HRV phenomenology. For α, it is estimated from the time 
averaged statistics of the log-increment of log2(rJ(t)). Let 
yJ(τ;t) = log2(rJ(t + τ)) – log2(rJ(t)) for integers τ, t. The 
time averaged pth order moment of yJ  (p>0) can be 
written as 
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For τk=N/2
k
, it can be shown that the set Tk

(j) 
= {t; ωj(t+τk) 

≠ ωj(t)} consists of disjoint segments, each of which 
associates with an unique ρj(τk, t) value. Moreover, |Tk

(j)
| 

= (2j – 1) × τk for j < k and (2j – 2j-k)τk for j > k.  The 
contribution from the jth cascade component to the second 
moment can be given by 
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Substituting (4) into (2) and keeping only second order 
terms result in  
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where u = 1 – 2α, D1 = 1 – 2u and D2 = 1 – 2-2α. For α � 1, 
D2

� D1, the third term is the dominant term in (5) due to 
the factor 2k – 1.  For large J » 1, it can be shown that 
σy(τk) ~ τk

α holds. Once α is estimated, J is calculated 
based on N and σ0 is determined accordingly. 

Figure 1 )( kyk
τσ  ~ τk

α
  from a data set in DB1. 

 
4. HRV synthesis 

From the last section, we estimated the cascade 
parameters from two different RRi databases: DB1 which 
consists of the day-time ambulatory ECG recording from 
ten healthy young adults conducting normal daily 
activities, and DB2 which was downloaded from the 
normal sinus rhythm database in physionet. Fig. 1 shows 

the power law )2(
k

mτ = log2( )( ky τσ ) ~ τk
α from a typical 

data set in DB1. The exponent α is estimated from the 
log-log plot of )( ky τσ  versus τk and σ0 is estimated from 

the intercept at the largest time scale. In the submission to 
CINC 2002 competition, we used the group-averaged σ0 
= 0.329 and α = 0.126 to generate the synthetic RRi. Fig. 
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2 shows the typical rJ(t) generated by the multiplicative 
cascade. This time series is able to capture similar HRV 
phenomenology of the experimental data [4]: (a) stretch 
exponential–exponential–gaussian (SEG) transition in 
∆rJ(τ) distribution as τ increases (Fig. 3), (b) multifractal 
scaling in 

�
|∆rJ(τ)|

q �
 ~ τζ(q)

 with nonlinear ζ(q) (Figs. 4a, 
4b) and (c) Poisson excursion of small RRi increment 
(not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Artificial RRi based on multiplicative cascade. 
The cascade parameters are log2(σ0)=-1.7, α = 0.1264. 
 
 

 

 

 

 

 
 
 
 
 

 

Figure 3 SEG transition of the increment probability 
density function (PDF) for τ = 1,8,128,2048 (from top to 
bottom). The “o” are the estimated PDF from the data 
used in Fig. 2. Solid lines are the estimated PDF of 
cascade ∆rJ(τ) using the same parameters as Fig. 2. Each 
increment PDF f(∆rJ(τ)) are rescaled and moved 
vertically for clarity purposes. 
 

5. Conclusion 

In this study, RRi synthesis was conducted based on 
the assumption of cascade HRV. The artificial data 
successfully captured some of the crucial properties in 
day-time healthy RRi fluctuation. The assumptions made 
in the current model include: (a) normally distributed 
cascade components, (b) power law decay in the 
component variance and (c) dyadic branching rule. These 
properties can be perturbed and give qualitatively similar 
results [8]. It should be noted that the model aims only at 
the fractal component of HRV. The so-called harmonic 
components were not considered. As a result, the power 
spectrum of rJ(t) exhibits theoretically a perfect 1/f law. 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 (a) Power law scaling of 

�
|∆rJ(τ)|

q �
 in a typical 

data set of DB1. (b) Averaged ζ(q) from 100 samples of 
rJ(t) generated by the cascade whose parameters are 
determined by the method described in Section 3 
(showing as solid line and one standard deviation). ζ(q) 
estimated from the real RRi data is plotted in “o”. 
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