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Abstract

This article is devoted to the creation of a near-real time

framework to discriminate between tissue and blood. We

perform a fast supervised learning of local texture patterns

of the plaque using Local Binary Patterns. A classifier

is build by assembling weak classifiers using boosting

schemes that allow quick performance and reliability. After

that, a deformable model is used to ensure continuity

in the segmentation and to fill in the gaps in the

classification scheme. Our supervised learning framework

has been validated using 450 test images from 15 different

patients. The resulting segmentation differs from the

physicians segmentation in a mean rate of 0.15 mm. and

maximum rate of 0.33 mm. The method benefits from

the low time consuming feature extraction, as well as a

faster classification scheme reducing 10 times the whole

processing time compared to most of the texture based

approaches.

1. Introduction

Intravascular Ultrasound Images (IVUS) are a well-

known imaging technique for direct visualization of

coronary arteries. However, visual evaluation and

characterization of plaque require integration of complex

information and suffer from substantial variability depending

on the observer. This fact explains the difficulties of manual

segmentation prone to high subjectivity in final results.

Automatic segmentation will save time to physicians and

provide objective vessel measurements. [1]

Nowadays, the most common methods to separate the

tissue from the lumen are based on gray levels providing

non-satisfactory segmentations. This leads to use more

complex measures to discriminate lumen and plaque. One

of the most wide spread methods in medical imaging for

such task is texture analysis. The problem of texture

analysis has played a prominent role in computer vision

to solve problems of object segmentation and retrieval in

numerous applications [2]. This approach, encodes the

textural features of our image, and provide a feature space

in which a classification based on such primitives is easier

to perform.

Previous works in segmentation of IVUS images have

shown different ways to segment lumen and to classify

tissues [3], [4], [5]. However, these approaches usually are

semi-automatic, sensitive to image artifacts and quite time-

consuming. In our approach we use Local Binary Patterns

[6],which is a fast rotational invariant multi-resolution

texture feature extractor based on ”uniform” patterns since

it is a fundamental property of texture.

The classification process is critical step in any image

segmentation problem. Recently, arcing and boosting

techniques have been applied successfully to different

computer vision areas [7]. In this paper we analyze

the relevance of boosting techniques, and in particular

AdaBoost in Intravascular Ultrasound Image analysis.

This process is integrated in an automatic framework for

discrimination of lumen and plaque. The method is divided

in 3 steps, corresponding to preprocessing step, feature

extraction, classification, and higher level organization of

data using deformable models. An objective evaluation

of the different approaches is made and validated by the

physicians in patients with different pathologies and images

with different topologies.

The paper is organized as follows: section 2 describes

the Local Binary Pattern features; section 3 introduces the

AdaBoost procedure for feature selection and classification

assembling of ”weak” classifiers; section 4 presents a

concise description of snakes; section 5 shows the results

of the methods and section 6 discuss the future lines.

2. Local Binary Patterns for feature

extraction

Local Binary Patterns is a feature extraction operator

used for detecting ”uniform” local binary patterns at

circular neighborhoods of any quantization of the angular

space and at any spatial resolution. The operator is derived

based on a circularly symmetric neighbor set of P members

on a circle of radius R. The operator is denoted by

LBP riu2
P,R . Parameter P controls the quantization of the

angular space, and R determines the spatial resolution of

the operator. Figure 1 shows typical neighbors sets. To

achieve gray-scale invariance, the gray value of the center
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Figure 1. Typical neighbors (Top-Left) P = 4, R = 1.0
(Top-Right) P = 8, R = 1.0 (Bottom-Left) P = 12, R =
1.5 (Bottom-Right) P = 16, R = 2.0.

pixel (gc) is subtracted from the gray values of the circularly

symmetric neighborhood gp (p = 0, 1, ..., P − 1) and

assigned a 1 value if the difference is positive and 0 if

negative.

s(x) =

{

1 if x ≥ 0
0 otherwise

By assigning a binomial factor 2p for each value obtained

we transform the neighborhood into a single value. this

value is the LBPR,P

LBPR,P =

P
∑

p=0

s(gp − gc) · 2
p

To achieve rotation invariance the pattern set is rotated as

many times as necessary to achieve a maximal number of

the most significant bits, starting always from the same

pixel. The last stage of the operator consist on keep the

information of ”uniform” patterns while filtering the rest.

This is achieved using a transition count function U . U is

a function which counts the number of transitions 0/1, 1/0
while we move over the neighborhood.

U(LBPP,R) = |s(gP−1 − gc) − s(g0 − gc)| +

P−1
∑

p=1

|s(gp − gc) − s(gp−1 − gc)|

therefore

LBP riu2
P,R =

{

LBP ri
P,R if U(LBPP,R) ≤ 2

P + 1 otherwise

The resulting operator is a powerful tool for texture

discrimination, and in this paper we prove that it is a

good feature extractor for Intravascular Ultrasound Image

segmentation.

(a)

(b)

Figure 2. Local Binary Pattern response. (a) Original

image. (b) Local Binary Pattern output with parameters

R = 3,P = 24.

3. AdaBoost for classification

High performing and fastness are two of the main

features desired for a classifier. However, they are

usually mutually excluding, so we can find fast, low time-

consuming classifiers but with relative bad performance.

Nevertheless, on the last few years, the subject of how

to take advantage of the fast classifiers by assembling

has been studied. This study has led to boosting and

arcing procedures. Recently, arcing procedures (Adaptative

reweighing and combining) have been credited to lead

to very high classification ratios using ”weak” learning

processes [7], [8]. Boosting allows the use of ”weak”

classifiers with accuracy on the training set greater random

classification. The goal is to create a high performing

classifier ensemble of ”weak” classifiers.

Adaptative Boosting (AdaBoost) is an arcing method

which allows the designer to continue adding ”weak”

classifiers until some desired low training error has been

achieved. A weight is assigned to each of the feature

points. These weights measure how accurate the feature

point is being classified. If it is accurately classified, then its

probability of being used in subsequent learners is reduced,

or emphasized otherwise. This way, AdaBoost focuses on

difficult features.

In our problem, the different classes are tissue and

blood. For each feature, the weak learner determines

the optimal classification threshold function, so that the

minimum number of feature points is misclassified. The

algorithm is described as follows

• Determine a supervised set of feature points {xi, ci}
where ci = {−1, 1} is the class associated to each of the

features classes (blood and tissue respectively)

• Initialize weights w1,i = 1

2m
, 1

2l
for ci = {−1, 1}

respectively, where m and l are the number of feature points

for each class.

• For t = 1..T :
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– Normalize weights

wt,i ←
wt,i

∑n

j=1
wt,i

so that wt is a probability distribution.

– Train a classifier, h. The error is evaluated with respect

to wt, ǫj =
∑

i wi|h(xi) − ci|.

– Update the weights:

wt+1,i = wt,iβ
ei

t

where ei = 1 for each well-classified feature and ei = 0
otherwise. βt = ǫt

1−ǫt

. Calculate parameter αt = −log(βt).

• The final ”strong” classifier is:

h(x) =

{

1
∑T

t=1
αtht(x) ≥ 0

0 otherwise

Therefore, the strong classifier is the ensemble of a series of

simple classifiers (”weak”). Parameter αt is the weighting

factor of each of the classifiers. The loop ends whether the

classification error of a ”weak” classifier is over 0.5, the

estimated error for the whole ”strong” classifier is lower

than a given error rate or if we achieve the desired number

of ”weaks”.

The weak classifier has an important role in the

procedure. Different approaches can be used, however it

is relatively interesting to center our attention in low time-

consuming classifiers. We have chosen a simple approach

by modelling the feature points as Gaussian distributions.

This scheme allows us to introduce the weights easily,

simply by calculating the weighed mean and covariance of

the classes at each step of the process:

µj
i,t =

∑

wi,txi Σj
i,t =

∑

wi,t(xi − µj
i,t)

2

for each xj
i point in class Cj . Wi,j are the weights for each

data point.

4. Snake-based accurate location of borders

The result after the classification step is a clear image in

which the main structures are clearly visible, but there is no

connection among them. This is a good example in which

a snake can be useful. The basic target of active contours

[9] [10] is to find a parameterized curve that minimizes the

weighted sum of its internal energy and external energy.

Given a traditional snake curve x(s) = (x(s), y(s)), s ∈
[0, 1], the snake can be formulated as the minimization of

the equation S(x) =
∫ 1

0
(α|x′(s)|2 + β|x′′(s)| + Ee)ds;

(a)

(b)

Figure 3. Training error of the process for a mixed set of

feature spaces. (a) (top) Weak classification error. (bottom)

Strong classification error. (b) Test classification error.

where α and β are weighting factors and Ee the external

energy.

The typical potential function designed to lead a

deformable contour toward step edges is P (x, y) =
−γ|∇[Gσ(x, y) ∗ I(x, y)]|2 where ∇ is the gradient

operator, γ is a weighting parameter, Gσ(x, y) is the

gaussian filter of standard deviation σ, and I(x, y) is the

image data. As can be observed greater σ will increase the

attraction range but the edges will blur. In our experiments

the snake is initialized at the top row of the image and is

attracted by the classification edges; therefore I(x, y) will

be the resulting classification image.

5. Experimental results

We have used images from 5 different patients to build

the training set. Segmentation of those images in the

training step has been manually guided by experts. The test

set is composed by different images of 10 different patients.

Feature extraction is done using Local Binary Patterns with

P = 8, 16, 24 and R = 1, 2, 3. As local binary patterns are

insensible to contrast we introduced the local variance using

the same neighborhoods as in LBP. Figure 2 shows the

output of the local binary pattern operator with parameters

R = 3,P = 24. As can be seen in the figure, the tissue has

lower values than the blood structures. On the other hand,

shadowed areas of the intravascular image has really high
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(a)

(b)

(c)

(d)

Figure 4. Test classification images at different stages of

the strong classifier. (a) Original image (b) ”Strong” with 3

”weaks” (c) ”Strong” with 7 ”weaks” (d) ”Strong” with 22

”weaks”

values in the feature space.

Figure 3 shows the typical behavior of the training

process of the AdaBoost classifier for a mixed set of

feature spaces and a simple ”weak” classifier approach.

Figure 3.a.(top) shows the error rate of each of the

”weak” classifiers. Each time a ”weak” is assembled,

feature are more difficult to classify due to the

weights influence, therefore the ”weak” classification error

increases. However, 3.a.(bottom) shows how the joint error

of the ensemble of the ”weak” classifiers (the ”strong”

classifier) decreases as more ”weaks” are assembled .

Figure 3.b illustrates the test error.

Figure 4 shows the evolution of the classification image.

It can be seen that the classification tends to be better the

most classifiers are assembled. However it must be said

that most of the time it tends to overfit or to stabilize in a

fixed error rate; hence, the number of the reliable ”weak”

classifiers for the application must be found. This can be

done using cross-validation processes.

We have applied this fully automatic integration

framework described in the former section to different

sequences from 5 patients, for validation of the methodology.

The resulting segmentation differs from the physicians

segmentation in a mean rate of 0.15 mm. and maximum rate

of 0.33 mm. This error rates are comparable to the detection

schemes found in literature. However, the classification

step is performed in very little time, allowing this kind of

schemes apt for real-time detection processes.

6. Conclusion and future lines

We have presented an integration framework for tissue-

blood segmentation in IVUS images using a classifier

ensemble with Adaboost over the Local Binary Pattern

features. The framework composed by LBP - Adaboost

- Snakes is strong and fast performing, leading to very

accurate results. Our current works aim for a near

real-time tissue characterization, which can be achieved

without increasing the processing time by using the same

framework since Local Binary Patterns features provide

enough information for tissue discrimination.
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