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Abstract

T wave alternans (TWA) has been proposed as a

marker for cardiac instability and high risk of malignant

ventricular arrhythmias. In this work, we analyze a

Generalized Likelihood Ratio Test (GLRT) approach to

TWA detection. We used several noise models considering

Gaussian and Laplacian distributions as well as three

stationarity degrees. Another novelty of the proposed

detectors is the use of the data from the P wave. The GLRT

detectors for all the models were derived and implemented.

Their detection performance was evaluated using real

ECG signals with simulated TWA, showing that models

accounting for the non-stationarity of the noise obtained

best results. We also found that Laplacian-based detectors

outperformed those based on Gaussian noise assumption.

1. Introduction

Electrical T-wave alternans (TWA) is defined as a

consistent fluctuation in the repolarization morphology

which repeats on an every-other-beat basis. It has been

documented in a wide range of experimental and clinical

situations, such as long QT syndrome, myocardial ischemia

and infarction, coronary artery occlusion, Printzmetal

angina and several other pathological conditions.

Although visible TWA is an infrequent phenomenon,

computerized analysis of digital ECG recordings allowed

in recent years the identification of subtle and non-visible

(microvolt) TWA, much more common than visible TWA.

Recently, several studies showed that TWA is related to

cardiac instability and high risk for malignant ventricular

arrhythmias and sudden cardiac death [1]. Thus the

importance of deriving robust and sensitive methods for

detecting TWA in ECG signals.

Several methods for TWA detection have been proposed.

Most of them are based on the well-known problem of

spectral estimation. The most widely used methods are

the spectral method (SM) and the complex demodulation

(CD). The SM [1] used the FFT to analyze the

frequency component 0.5 cycles/beat over the aligned ST-

T complexes. In the CD approach [2], the alternant

component is demodulated and low-pass filtered to obtain

a continuous beat-to-beat alternans measure.

In a previous work [3], we showed that both SM and

CD can be seen as GLRT TWA detectors “matched” to a

given episode shape and duration immersed in Gaussian

noise. We also developed a similar GLRT detector for

Laplacian noise, which is a more realistic assumption for

the noise present in TWA. In both cases, the noise variance

was assumed constant and known. However, in real ECG

conditions, noise variance is unknown and usually non-

stationary, with the consequent degradation in detection

performance.

In this paper, we derive detectors for non-stationary

noise models with Gaussian as well as Laplacian statistics.

We also consider auxiliary data from the P wave, which

participates in the estimation of noise parameters. The

models and the derived GLRT detectors are presented in

Section 2, where we also describe the simulation study used

to assess the detection performance. The results are given

and discussed in Sections 3 and 4, while in Section 5 we

expose the conclusions of the work.

2. Methods

2.1. Signal and noise models

In most of the published methods for TWA analysis,

consecutive ST-T complexes are extracted, aligned and

put together into an ST-T matrix X, whose i:th column

contains the i:th beat’s ST-T complex (
���

samples).

Equivalently, the j:th row is formed by a beat-to-beat

amplitude series containing the samples with the same

phase within the repolarization interval. If there is no

available prior knowledge about the episode shape, a

reasonable assumption is to consider the alternans episode

to be constant within an analysis window of L beats. Then,

the
�������

ST-T matrix X can be modeled as

�
	���
����������� ����� (1)

where �����  !� "$#&%('('('!%) !� ���
*,+ # #
�

is the periodic T-wave,- �.� /0� "$#&%('('('!%)/0� ���1*2+ # #
�

is the alternans waveform, 1

is an all-ones L
�

1 vector, and 3)4 is the L
�

1 alternant

vector � 5 *�+7698 %�'('('!%:5 *�+76<;0=�> #
�

. All the other non-desired

components can be grouped into the noise matrix W.

However, in ECG analysis, we have access to additional

available data, such as P wave, where TWA does not affect

the signal. We propose in this work to include these data in
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the signal model. That information can be used to improve

the noise power estimation, and consequently, the TWA

detection performance. The signal model is then

�
	���� ��� 
 � �������� � �� �����
(2)

with 	
� � 
 � "$#&%('('('!%�
 � �
� * + # #
�

the periodic P-wave. The

data matrix X is now a
� � �

matrix (where
� � ���������

)

whose columns are the concatenation of P wave and ST-T

complex samples in L consecutive beats. The n:th row, i.e.

the beat-to-beat series composed of the n:th sample of each

complex, is then

����� ��� 	���� � ��� ��� ��� ��� � �! �
"$#&%' � �)(*#,+-� �!. � �)(*#,+-�0/ (2143 � ��� �5� ��� � #,+  �
"$# (3)

for 6���")%('('(' % �0* + . Subtracting an estimation of the periodic

component (the mean of each row) or using a detrending

filter, the constant terms corresponding to the repetitive

P / ST-T can be canceled. Thus, the model for the observed

detrended series reduces to�87� � ��� 	 � � ��� ��� � �! �
"$#&%. � �9(�#,+-�0/ (2143 � ��� �5� ��� � #,+  �
"$#;: (4)

To simplify the notation we will use <�=<� >0# for
the demodulated detrended series ?A@= � >0#95 *�+76CB , and the
alternans signal will be denoted asDE� ��� 	 � � �! �  #,+!(F1G/ HJI9KCLEMN3. � �9(�#,+-�O#,+  �  #P(F1G/0Q-RS()RUTCVXWJY)Z M\[83 : (5)

The hypothesis testing problem in TWA detection is]_^!` � 	 �]ba2` �dc	 � : (6)

The noise is generally assumed to be uncorrelated and

Gaussian with zero mean and variance e,f .
In this work, we consider two noise distributions:

Gaussian and Laplacian. For each of them, we study three

different noise models with different assumptions about the

degree of knowledge and stationarity. Model A: the noise is

uncorrelated (Gaussian or Laplacian) with zero mean and

known variance e9f . Model B: the noise is uncorrelated

(Gaussian or Laplacian) with zero mean and unknown

variance egf and Model C: the noise is uncorrelated

(Gaussian or Laplacian) with zero mean and beat-to-beat

changing unknown variance e9f= %G6 ��")% '('('(% ��* +
. Model

A is essentially the same approach as in [3] and assumes

a constant noise variance for any signal block. Model B

assumes a constant noise level within the analysis window,

but accounts for slow changes in noise power. The

assumption of Model C is much weaker, and allows beat-

to-beat changes in the noise variance.

2.2. GLRT detectors

The GLRT decides h > if the likelihood ratio

iAj / � 3 	 �lk � 75mAnoXp � ] prq�lk � 7 mAno4s � ] s8q�tFu � (7)

where vw > and vw 8 stand for the maximum likelihood

estimators (MLE) of the unknown parameters under h > andh 8 respectively.

The number of unknown parameters depends on the

assumed model. In model A, vw > ��x v-�y and vw 8 ��x y .
In model B, vw > ��x v- % vegf> y and vw 8 ��x vegf8 y . Finally, in

model C, we have vw > ��x v- % vegfz�{ > y and vw 8 ��x vegfz�{ 8 y for i =

0 ... L - 1. The MLE of each unknown parameter depends

on the assumed statistical model. In Table 1, the MLE

estimators and the GLRT detectors are given for Gaussian

and Laplacian pdf. There, med( | ) stands for the median

operator, med( | }�~X= ) for the weighted median with weights~N= , and

��� / � 3 	 ����
���

� �^4�*�4��� �-� ���� � �-� � ��� ���d� ���� � �r�S� �
( � ��� � �-� �*�4�0� �-� � ^ � ��� ����� ���� � �r�S" � (8)

i.e., the GLRT for a single alternans series in Laplacian

noise, as shown in [3].

Any monotonic function of the GLR is also a GLR

Test [4]. Using this property, the detectors in Table 1

can be simplified. The known e9f in �g�,� 55� 6 (and e in� ; � 55� 6 ) can be dropped out from the test and absorbed by

the threshold. In this model, variations of e are not taken

into account. From �9�,� 55� 6 and � ; � 55� 6 we can derive

the equivalent detectors

� 7jG� / � 3 	
a� �� �¡
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(9)
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which are similar to �9�,� 55� 6 %G� ; � 55� 6 , but estimating e in

each data block. As for �9�,© and � ; © , they are not easy to

simplify. To calculate the MLE under h > , we found a joint

maximization of v/0� >0# and ve z�{ > (which are coupled). That

was solved by following an iterative procedure, departing

from an initial estimation of the noise parameters in the P

wave series.

The six TWA detectors corresponding to the six models

were implemented and evaluated. All of them share

the same preprocessing stage, including QRS detection,

baseline wandering, linear filtering (20th-order equiripple
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Table 1. ML estimators and GLRT statistics for the studied noise models.
Model Gaussian MLE Gaussian GLRT Laplacian MLE Laplacian GLRT

A �4 � B�� >;
������ � 	�
�� � � 
���� B�� ������� �������   ���� � 	�
 �4 � � B��! � �4 � B�� "$#&%(' ���) 	�
 � � � � 
���� B�� � � � �*� ���+� � ����� 	 � �

� � � ���!
�4 � B�� >;

������ � 	�
�� � � 
���� B�� �4 � B�� "$#&%(' ���) 	�
 � � � � 
��,� B�� �
B �! �� >
 ; � ���� � 	�
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������ � 	�
 33 -/. � � B�� = �0 � B�� 33 � � 1�� ����� �! 
�! �

�! �
 >
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� ���� � 	�


������ � 	�
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 2 f
 ;
� ���� � 	�


������ � 	�
 33 -/. � � B�� 33
�4 � B�� >;

������ � 	�
 � � � 
���� B���! �� 4 ������� � 	�
 �56 �� 4 � �4 � B�� "$#&% ' ���) 	�
87 � � � 
��,� B�� 9 >�! � 4 �;:
C �! �� 4 � >
 � ���� � 	�
 k�-/. � � B�� = �0 � B�� q � ����<�� ����� �����= � 	�
 �! �� 4 
�! �� 4 � �! � 4 � 2 f
 � ���� � 	�
 33 -/. � � B�� = �0 � B�� 33 � � <�� ����� �����= � 	�
 �! � 4 
�! � 4 �

�! �� 4 
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 � ���� � 	�
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 2 f
 � ���� � 	�
 33 - . � � B�� 33
linear phase FIR low-pass filter with transition band

between 15 and 30 Hz), ST-T segmentation, alignment and

decimation. The length of the analysis window was
�

=32

beats. As the location of the TWA episode is usually not

known, the presented GLRT detectors are applied on a

sliding-window basis, so that the test statistic is computed

and compared with the threshold for each new beat.

2.3. Simulation study

To evaluate the TWA detectors under real noise

conditions, we used records (Frank leads) from healthy

subjects from the Politecnico-Ca’ Granda Database [5]. We

extracted 413 ECG segments (128 beats long) from the

23 records. TWA episodes were simulated by adding and

subtracting alternatively a Hanning window to the ST-T

complexes. The amplitude of this waveform was beat-

by-beat modulated by a 56-beats-long trapezoidal episode

shape, remaining during 32 beats at its maximum value.

The episodes were centered in each 128-beat segment

and the simulated TWA amplitudes ranged from 0 > V to

100 > V. The performance of the detectors for each TWA

amplitude was evaluated in terms of episode sensitivity ?$@
and specificity ?A
 for a given threshold. Sweeping different

threshold values, ROC curves were obtained.

3. Results

As the level of the noise present in the recordings was

very different in the three leads, we show the results for lead

X (which was generally the one with least noise) and for

lead Y (the noisiest one). Figure 1 shows the ROC curves

for the Gaussian (a), (b) and Laplacian detectors (c), (d).

We show the results for a TWA amplitude of 5 > V in lead

X, and 20 > V in lead Y.
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Figure 1. ROC curves in leads X (with TWA of 5 > V) and

Y (TWA of 20 > V).

To compare in a simple way the behavior of the

detectors for different TWA amplitudes, we summarize the

information of the ROC curve with a single parameter,

called S95 and defined as the sensitivity (%) of the detector

using a threshold so that the specificity is 95%. In Figure 2
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S95 is plotted against the TWA amplitude at leads X and Y

for the six implemented detectors.
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Figure 2. Performance of the detector (S95) as a function

of the TWA amplitude.

4. Discussion

In low noise conditions (lead X), the performance

observed is similar for all the studied detectors, showing

a slightly better performance the detectors based on non-

stationary noise models as it can be seen in panels a) and c)

of Figures 1 and 2.

When the noise level is important (lead Y), we found

clearer differences among the detectors. In particular,

under the assumption of stationary, known noise variance

(Model A), the Laplacian detector outperforms clearly the

Gaussian-based detector, supporting the hypothesis that

real ECG noise affecting TWA detection can be better

modeled with heavy-tailed distributions than with Gaussian

distribution. However, when permitting the model to

account for the noise variations, the differences between

both probability densities vanishes, to the point that the

Gaussian- and Laplacian-based detectors have essentially

the same performance under Model C.

In the Gaussian case, the poor performance of the known

stationary noise detector was significantly improved by

using non-stationary models (see Figures 1(b) and 2(b)). In

high noise conditions (lead Y), the TWA amplitude needed

to attain Se=95% and Sp=95% was reduced from 62 > V to

53 > V using Detector 2 (which consists just on normalizing

the stationary detector by the MLE estimator of the noise

variance), and to 28 > V using Model C, which performs a

beat-to-beat noise variance estimation.

However, the Laplacian-based detector shows a much

slighter improvement. With the Laplacian models, even

the simple Model A detector attains Se=95% and Sp=95%

for amplitudes as low as 32 > V. Using Model B, the

performance is improved for low amplitude TWA ( ����� ��� 20

> V), but it is degraded for higher amplitudes, probably due

to the variance in the noise estimation, and the required?$@ and ?A
 are only reached for ����� � =43 > V. Finally, with

Model C, the necessary amplitude drops to 28 > V.

5. Conclusions

In this work, we departed from the hypothesis that a good

underlying noise model would improve the performance of

a TWA detector. We derived GLRT detectors for Gaussian

and Laplacian noise distributions as well as three different

degrees of noise knowledge and stationarity. All models

accounted, not only for the ST-T complex, but also for

the P wave. The detectors were tested with real noise in

ambulatory recordings with simulated TWA. The results of

their evaluation highlight the importance of signal and noise

modeling for designing a good TWA detector.

The results show that TWA detection performance in

real noise conditions degrades when assuming a Gaussian

stationary model. The beat-to-beat changing noise model

has shown to be the most robust (but also the most

complex), attaining the best performance for both the

Gaussian- and Laplacian-based detectors. However, similar

performance can also be achieved using a stationary

Laplacian-based detector, which is intrinsically more robust

to outliers.
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