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Abstract

Computer models of the heart lead to a better

understanding of the physiological and physical processes

underlying each heart beat. Various models exist for

simulating electrophysiology, excitation propagation, force

development and deformation. Simulations can be used

to support medical doctors in diagnostics, surgery planing

and serve educational purposes. This work focuses on

simulating mechanical aspects of a heart. Simulations

with electrophysiological, excitation propagation and force

development models were carried out. Force development

was utilized as input to the mechanical model. A hybrid

myocardial deformation model is introduced merging a

spring mass system and a continuum mechanical model.

Simulations with simple geometries and fiber orientation

were conducted to display the models capabilities. Detailed

analysis of the deformations of a patch yielded the expected

behavior.

1. Introduction

Computers have become an essential tool in modeling,

visualization and estimation of experimental results,

thus saving time, resources and not conflicting with

ethical objections. In cardiac research computer models

and simulations lead to a better understanding of the

physiological and physical processes. Simulations of the

heart can be used for research, surgery planning and

educational purposes.

In this work a simple ventricle model, realized as a half

ellipsoid, was constructed taking anatomical and physical

properties into account e.g. fiber orientation and electrical

conductivity. Electrophysiological models, excitation

propagation and force development models were applied

resulting in a time course of force development for each

voxel, which served as input for mechanical calculations.

A hybrid deformation model was implemented based on

a spring mass system enhanced by continuum mechanics

based methods (Fig. 1).

This paper focuses on deformation simulations with the

hybrid deformation model, carried out on a patch taken
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Figure 1. Overview of myocardial deformation simulation.

The solid arrows show step by step progression of

simulation. The dashed arrow represents the possibility of

mechanical feedback.

from the simple ventricle model.

2. Materials and methods

In this work a simple ventricle model was constructed.

The geometry consisted of a half ellipsoid representing

a ventricle, where physical properties were implemented

(Fig. 2). Electrophysiological simulations were carried

out utilizing a model of Noble et al. [1]. The

excitation propagation was modeled using the bidomain

model [2]. Electromechanical coupling was implemented

via exchange of intracellular concentration of calcium [3].

The electrophysiological simulations were done prior to

mechanical deformation simulations and resulted in a time

course of force development (Fig. 3).

A patch was extracted from the ventricle model to

conduct mechanical deformation simulations. The patch

consisted of �������
	 voxels and was taken from the upper

wall of the ellipsoid (Fig. 2). The force development

calculated inside the geometric boundaries of the patch was

used as input for the deformation simulation.

2.1. Hybrid deformation model

The deformation model was based on the spring mass

system of Bourguignon et al. [4] enhanced by continuum

mechanics based methods [5]. A spring mass system
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Figure 2. A half ellipsoid was rendered in a �
�����
�������
voxel lattice with edge length of 0.2 mm. A patch of�������
	 voxels was extracted shown in dark gray, to

conduct deformation simulations.

represents objects by masses and springs reproducing

their physical quantities with appropriate points and

constraints. This leads to a mesh structure approximating

the object geometry. In this work a myocardial patch of�������
	 voxels with fiber orientation varying from epi-

to endocardium from ������� to ����� was represented as a

volumetric mesh (Fig. 4). A cubic element was chosen as

underlying mesh structure representing a cluster of cells.

Each cell was formed by masses at the corners and springs

aligned with the cubes edges (Fig. 5).

The myocardial properties were implemented as proposed

by Bourguignon et al. [4], who utilized three linear

anisotropic directional and eight linear volumetric springs.

The first of three anisotropic springs were set in fiber

direction at the center of each voxel. The remaining

denoted sheet and sheet normal direction and were kept

perpendicular throughout the simulation. Forces generated

by springs were translated by linear interpolation functions

to corresponding corner masses [6]. The isovolumetric

springs were attached to the center and the corner masses

of the voxel. This model was tested but simulations

depicted that finding appropriate spring parameters was a

time consuming task and modeling of nonlinear behavior

of myocytes was impossible. Therefore, a continuum

mechanics approach was chosen to form a hybrid model.

An exponential strain energy density function � to
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Figure 3. Time course of normalized force calculated with

force development models for a voxel at the upper rim of

the half ellipsoid.

(a) (b)

Figure 4. Myocardial patch built of �������
	 voxels denoted

by wireframe outlines (a). The patch is cut in a stairway to

display fiber orientation (b). Fiber orientation varies from

epi- to endocardium from ������� to ����� shown by black

cylinders.

model anisotropic myocardial mechanics as described by

Guccione et al. [7] was applied:� � � ���������! �"# � �
$&%�')(+*�*-,.(+/0/1,2(4353�6, $ � (47/0/ ,8$:9 � (+7353 ,2(47*�* ,2(473;* ,.(+7*�3 ", $=< � ( 7*�/ ,.( 7/0* ,2( 7/>3 ,.( 73;/ "
Where ? and $A@ are constants chosen as described by

Sachse [8].
#

is the representation of three-dimensional

transverse isotropy with respect to fiber orientation

dependent on the Green-Lagrange strain tensor ( . IndicesB
, ? and C indicate fiber axis, cross-fiber in plane axis and

radial axis.

This energy density function � was used to calculate

material stress starting from material strains. For each voxel

the deformation gradient D and Green-Lagrange strain

tensor ( was determined. The second Piola-Kirchhoff

stress tensor E was derived and the Cauchy stress tensorF calculated:

E��HG �G (JI F �KD LMONQP D ERD
S
The tensor F applied to the voxel surfaces led to a force

acting on the corner masses. The masses were displaced

(a) (b) (c) (d)

Figure 5. A cubic voxel of myocardial tissue is modeled

with masses and springs. (a) Masses are denoted as spheres

at the corner of a voxel. (b) Anisotropy is modeled with

three springs, displayed as cylinders, which are located at

the voxel center. They describe fiber, sheet and sheet normal

orientation. (c) Structural and (d) surface springs were used

for continuity of voxel.
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and a new strain setup was achieved. This iterative process

was continued until displacements were small.

The isovolumetric springs were replaced by isovolumetric

constraints adopted from a Mooney-Rivlin model, whereby

only the isovolumetric component of the Mooney-Rivlin

strain energy density function �UT was utilized:

�VTW�KX�Y MONQP D.� LMONQP D[Z 7
The factor X was chosen by evaluating numerical

experiments. The Cauchy stress tensor F T was derived

from � T by the means described above and also

contributed a force to the corner masses.

The described enhancements translated deformations in

material stress and resulted in nonlinear spring behavior.

3. Results

Deformation simulations with the hybrid model were

conducted upon the patch. The myocardial tension was

introduced using the simulations with a force development

model. The force development was sampled every 20 ms

for the duration of 600 ms. The deformation simulation

for each time step was allowed 10’000 iterations to ensure

the patch relaxed into a steady state. The patch was fixed at

the top layer and no boundary conditions were implemented

upon the sides.

The following relative simulation times have been

achieved on a single processor SGI 400MHz MIPS R12000.

The average volume (average vol.) preservation per voxel

and the standard deviation (stddev) is displayed:

model type time in % average vol % stddev

spring model 100 91 0.054

hybrid model 112 98 0.028

The deformation simulation is displayed as a sequence of

pictures from side and bottom view (Fig. 7). Numbers

indicate time in seconds. The maximal force resulted in

maximal deformation at time step 150 milliseconds. The

white wireframe denotes relaxed position.

The volume preservation is displayed cutting the patch

in the z axis into slices at time step 150 ms. The volume

divergence in percent of each voxel in the slice is compared

between spring mass system and hybrid model (Fig. 6).

The plots indicate that volume preservation has improved.

The plots on the right column of Fig. 6 show the regional

divergences in a more detailed way.

4. Discussion and conclusion

A hybrid model was presented for simulating cardiac

deformation. A spring mass system was enhanced
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Figure 6. The volume divergence in percent is displayed

at time step 150 ms. The patch was parted in slices from

top (z=3) to bottom (z=0) and the volume divergence of

each voxel is plotted. The difference between volume

divergence of hybrid model (black grid) and spring mass

system (dashed grid) are displayed. The right column

visualizes a close up in the range of 0 to 20%.

by continuum mechanics based methods to implement

nonlinear material properties. Simulations were performed

using a patch of a simple ventricle model. Prior

calculated force development slopes were utilized to trigger

deformation. Simulations showed, that deformations of the

patch yielded the expected behavior. The implementation of

continuum mechanics resulted in an elimination of spring

tuning but led to an 12% increase in computation time.

A distinct improvement of isovolumetry using the hybrid

model was achieved (Fig. 6). While the improvement in

layer \]�_^ is not too vast, a precise improvement in layer\`�a� is noticeable. The rough shape at the borders indicate

that further emphasis has to be set on border conditions and

patch shape.

5. Future work

Future work will be done concerning computation time

aiming for simulations with simple ventricle models and

MRI volume data of the left ventricle. Furthermore,

isovolumetry will be enhanced and merging of spring and

continuum mechanics based methods will be improved.
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The border outlines of patches to be simulated has to be

investigated. In addition a comparison of simulated and

measured velocities of voxels is considered to validate the

simulation.
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Figure 7. Deformation simulation with the �������
	 voxel

patch. The left column shows a front view of the patch. The

right column the view from the bottom. The patch was fixed

at the top layer. The numbers indicate time in seconds. The

white wireframe indicates undeformed state.
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