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Abstract 

 A simple continuous nonlinear model of the human 

cardiovascular system (CVS) is investigated while 

focusing on the simulated achieved blood pressure (BP) 

signal. The beat-to-beat version of this model, introduced 

by DeBoer et. al. was a simplified linearized version. We 

present a modified model, which allows investigating the 

nonlinear dynamics of the CVS and the effect of 

variations in several physiological parameters on the 

correlation dimension, . The simulation reveals 

nonlinear features such as bifurcation, due to variations 

in the g-sympathetic gain and the respiratory term. In 

addition, we studied the limitations of calculating  in 

the presence of noise. The  values obtained from the 

simulated BP signals are similar to values obtained in 

our previous experimental animal studies. Our results 

emphasize that nonlinearity in cardiovascular control is 

indeed a fundamental feature of the system.   
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2.  Method 

 

Model Design: The beat-to-beat model consists of a 

set of difference equations [1,3]. These equations 

describe the temporal evolution of the following state 

variables: systolic pressure (S), diastolic pressure (D), RR 

intervals (I), and arterial decay time constant (T).  

The diastolic pressure (Di) of each beat is expressed in 

terms of the previous beat parameters (denoted Xi-1), in 

accordance with the Windkessel properties of the 

systemic arterial tree [1]: 
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The variations of the systolic pressure are governed by 

the contractile properties of the myocardium and the 

mechanical effect of respiration, according to:  
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 where γ and C1 are constants, A and f respectively are the 

amplitude and frequency of an oscillatory term reflecting 

the effect of respiration, ti is the time elapsed from the 

beginning of the simulation to the current systole 

(measured in msec) and NPPi  is a Gaussian noise source 

affecting the pulse pressure.  

1. Introduction 

 

Recently there has been a growing interest in using 

nonlinear analysis tools for investigating the characteristics 

of the cardiovascular control system. In this work 

nonlinear tools were used to study pseudo-continuous 

blood pressure (BP) signals that were produced by a 

simple nonlinear model of the short-term control over the 

cardiovascular system (CVS). The model that was used 

was a modified version of the beat-to-beat model that has 

been previously proposed by DeBoer et. al. [1]. Though 

the original model was based on nonlinear equations, it 

was studied after linearization.  

The sigmoidal nature of the baroreceptors sensitivity is 

accounted for by defining an effective systolic pressure 

(S’) (3) [1], upon which the control over the heart rate (4) 

and peripheral resistance (6) depends.   
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where  is a constant.  0S

The control over the heart rate is a combination of two 

mechanisms: the vagal control and the comparatively 

slower β-sympathetic control, both defined by their 

respective gain (Gv=18msec/mmHg, Gβ=18msec/mmHg) 

and delay (τv=0beat, τβ=4beat): 

An important tool for characterizing nonlinear 

properties of systems is the correlation dimension ( ). 

Yet, in contrast with linear analysis tools and despite 

many recent studies, the physiological meaning of  is 

to a large extent unclear.  
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where  is the above defined effective systolic pressure, 

C

i
S'

2 is a constant, NRRIi is the Gaussian noise affecting the 

RR intervals, and F(S’,τ) is a linear weighted sum of five 

effective systoles centered at i-τ  

The goal of this work was to study the physiological 

meaning of  and to investigate the effect of various 

physiological  parameters as well as noise sources, on the  
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The arterial decay time is controlled by the α-

sympathetic control loop, which is given in terms of its 

gain (Gα=18msec/mmHg) and delay (τα=4beat):   
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For each set of parameters of the simulation, we have 

produced five similar signals in which the only change 

was the noise signal that we added to the simulation. In 

these cases an average over the five 
2

DS  was performed, 

to produce the actual 
2 2

D D± ∆  for the set of parameters. 

Only valid 2DS , that passed the convergence test, were 

added to the average.  

where C3  is a constant and N
ki is the Gaussian noise added 

to the arterial decay time.   

The constants of  the model (C1,, C2, C3, け and S0) are 

determined according to the operating point chosen for 

each state variable. The values we have used for the 

operating point are considered to be normal human 

values: 120mmHg and 75mmHg for systolic and diastolic 

pressure respectively, 800msec for average RR intervals 

and 1134msec for the average arterial time constants. 

 Our software for calculating 
2

D  was tested 

successfully on signals with well-known 
2

D  values 

(Henon map, Lorenz model, and Mackey-Glass).  

 

3.  Results 

It is important to note that we have performed our 

simulations with the nonlinear equations in their original 

format without any linearization.  

 

The default parameters without noise and without the 

respiration term at (2) produced a value of 

 for the simulated BP traces.  
2

1.0091 0.0004= ±DSimulation of continuous BP signal: We have used an 

interpolation procedure in order to produce a continuous 

BP sequences from the beat-to-beat state variables. Each 

beat in these signals comprised a linear rise in pressure and 

an exponential decay of it, in which  serves as the 

exponential decay constant. The duration of each beat was 

set by its I

i
T

i. The ratio between the duration of the linear up-

rise and the duration of the exponential decay was constant 

throughout each simulation. This ‘continuous’ time signal 

was then digitized at a frequency of 25Hz, which produces 

20 points for each heart beat under normal physiological 

conditions. Each final BP signal consists of 10,000 points 

in a steady state condition.   

Effect of Noise: The three noise sources (equations 2, 

4 and 6) were added to the simulation in a variety of 

amplitude combinations. As a result of the addition of 

these noises, repeated simulations with the same set of 

parameters resulted in variation in the correlation 

dimension of each signal, 
2

DS . These variations were 

higher than the error within each calculation, 
2

DS∆ . 

Therefore each set of parameters was simulated and 

studied 5 times, and 
2

DS  was averaged to produce 
2

D .  

An example of the influence of the level of noise on  

the relative error of 
2

DS  is shown in the simulations in 

Figure 1, in which we added  only  Npp  to  equation  2. 

2
DS   showed   similar  behavior  when  the   other   noise 

Calculation of the D2: Then for each synthesized 

‘continuous’ BP signal we have calculated the correlation 

dimension, , as suggested by Grassberger and 

Procaccia [5]. The calculation requires a careful choice of 

several parameters. In order to be able to compare 

between  values that were obtained from simulated 

BP traces and from experimental traces, exactly the same 

calculating protocol was used as in [4]. A detailed 

discussion regarding the specific choice of parameters 

can be found there [4].  
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We will elaborate here only on the embedding 

dimensions, n, that were used. 
2
( )D n  should reach a 

plateau as a function of the embedding dimension. We 

have used an acceptance criterion for the  based on 

this plateau. A weighted average over the 

D2

2
( )D n , with 

1/variance being the weight and the corresponding 

standard deviation (SD) were calculated over the 
2
( )D n  

obtained for embedding dimensions n=6 to 10 [4], 

producing 
2 2

DS DS± ∆ . The convergence of 
2
( )D n  as 

well as the validity of the 
2

DS  was determined by 

requiring that 
2 2

DS D∆ S <1.5% [4]. The threshold of 

1.5% was chosen after examining many 
2
( )D n  graphs.  

Figure 1. An example of the relative error of each signal, 

2 2
DS DS∆ , as a function of the level of noise added to 

the pulse pressure, Npp in equation 2.  
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 sources, RRIN  and Nτ , were added, either separately, or 

as a combination of two or three noise sources.  
〉Gg=0.1msec/mmHg. For the deterministic part of the 

simulation, the bifurcation was at Gg=21msec/mmHg. 

When a low level noise was added to the simulation, we 

did not obtain a clear bifurcation point for . In the 

region of 21< <21.4, we obtained that for some BP 

realizations, 

Gα

Gα

2
DS  was below 2, whereas other 

realizations produce values above 2. In addition, some 

realizations, in this region, did not produce any valid 

2
DS . However when G  reached 21.5msec/mmHg, all 

the realizations produced valid 

α

2
DS , all above 2.  

Noise with small amplitude resulted in a valid 

(acceptable) 
2

DS , meaning their relative error, 

2 2
DS DS∆

2

, was lower than the 1.5% threshold, for 

every simulation run. Further increase of the level of 

noise resulted in an intermediate region, in which, for the 

same level of noise, some of the simulations traces had 

valid DS  values whereas other traces did not. It is 

important to note that 
2 2

DS DS∆  in these cases varied 

markedly between the different signals. Thus the fact that 

some traces where accepted while others were denied, 

was not a result of small fluctuations around the threshold 

(see Figure 1).  

Effects of respiration: Changing the amplitude and/or 

the frequency of the respiratory term in (2), while the 

other parameters were set to their default values and 

without any noise source, also caused a bifurcation, in 

which 
2

D  jumps from below 2 to above it. Trying to 

obtain 
2

D  values larger than 3, by combining changes 

that resulted in 
2

D >2, such as using high gain and 

respiratory term with post bifurcation parameters, did not 

succeed.  

Further increase of the noise amplitude, resulted in 

unacceptable 
2

DS  for all the simulated signals.  

Effect of g Sympathetic Gain, Gg: In our previous 

study [3], we have found that Gg is a bifurcation 

parameter for the discrete model.  

In the present study, we were interested in studying the 

effect of Gg on the 
2

D . More specifically we intended to 

investigate the region around the bifurcation. This part of 

the study was performed without the respiration term 

(equation 2), but both with and without low level noise.  

 

4.  Discussion 

 
 As long as Gg was equal or below 20msec/mmHg, the 

2
D  obtained were clearly lower than 2 (see Figure 2). 

When a small amount of noise was introduced to the 

model, a small but monotonic increase in 
2

D , as a 

function of Gg, was observed, for Gg<20msec/mmHg. Gg 

of 21.5msec/mmHg and above resulted in 
2

D  values that 

were above 2.  

In this work, we studied the effect of several 

physiological parameters on the dynamical behavior of 

the CVS, as reflected by 
2

D  calculated from computer 

generated BP signals.  

The model that was used to produce the BP signals 

was a modified version of a basic beat-to-beat model of 

the CVS that was studied previously using linear tools 

[1,2] and nonlinear tools [3]. The main modification in 

the current model with respect to [1-3] was the use of 

continuous BP data. The 
2

D  values of BP signals 

obtained in simulations with normal physiological 

parameters were in full agreement with earlier 

experimental studies [4,6].  

The region of the bifurcation  (20<Gg<21.5 

msec/mmHg)    was    studied    in    more    details,   with  
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As expected, adding noise to the simulation increased 

the 
2

D  or destroyed the ability to calculate it. However, 

the addition of noise did not result in a bifurcation, 

indicating that the bifurcations were due to the 

deterministic part of the model.  

In a real physiological system one should expect the 

presence of various non-deterministic mechanisms 

affecting the control of the CVS. As indicated by our 

results such mechanisms may affect the calculation of 

2
D . In this way a system with the same control 

parameters may show different behavior of 
2
( )D n  plots 

in two different periods of time. Evidences to such a 

behavior were observed in our previous experimental 

study [4], in which traces with high relative error were 

disregarded due to the suspicion that the system was non-

Figure 2. Correlation dimension as a function of g-

sympathetic gain.  
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stationary when these signals were recorded. According 

to the results in this work it can be seen that similar effect 

on the calculation of 
2
( )D n

2

 can be observed even for 

traces that were generated by a model with stationary 

parameters.  

D

parameters was found to be low, in exclusion of the range 

of bifurcation transition. This low sensitivity results in a 

poor signal to noise ratio in real life studies, which leads 

us to the conclusion that the ability to gain physiological 

insight about the CVS by calculating 
2

D  for the BP 

signal, is very limited. Nonetheless since the system has 

displayed obvious signs of nonlinearity, it is important to 

develop a good understanding of its nonlinear features.  

The sensitivity of  to variation in was found to 

be very week, with the exception of the bifurcation 

region. Furthermore, taking into account the variation in 

the 

Gα

2
DS  values due to the noise in an experimental study 

indicates that it will be very hard to detect changes in G  

by calculating 

α

2
D  from experimental signals as long as it 

does not reach the bifurcation.  

 

Acknowledgements 

 

This study was supported by a grant from the Israeli 

Science Foundation and by the Abramson Foundation. A difference of 0.5msec/mmHg was found between 

the  values for the bifurcation, in the noise free 

continuous model versus the beat-to-beat model. This 

difference could be the result of the dominant oscillation 

in the HR frequency in the continuous model, which 

hides the small fluctuations that arise in the beat-to-beat 

state parameters after the bifurcation.  

Gα  

 

Reference  

 
 [1] DeBoer RW, Karemaker JM, Strackee J. Hemodynamic 

fluctuations and baroreflex sensitivity in humans: a beat-

to-beat model. American Journal of Physiology-Heart 

and Circulatory Physiology 1987; 253:680-689. 
Studying the bifurcation as a function of G , with the 

addition of a low level noise, resulted in a bifurcation 

region with a well-defined width as opposed to the sharp 

jump expected. This suggests that even low-level noise 

may hide the effect of the bifurcation. Once again, we see 

that analyzing experimental data based on calculating 

α

2
D  

from BP signal, may be very complicated due to the 

noise. Nonetheless, the noise does not eliminate 

completely the effect of the bifurcation. Furthermore, 

since the bifurcation region of the noisy signal does not 

start before the actual noise-free bifurcation occurs, it 

might be possible, even in a noisy experiment, to obtain 

an upper bound for the onset of the noise free bifurcation. 

 [2] Whittam AM, Clayton RH, Lord SW, McComb JM, 

Murray A. Heart rate and blood pressure variability in 

normal subjects compared with data from beat-to-beat 

models developed from de Boer's model of the 

cardiovascular system. Physiological Measurement 

2000; 21(2):305-318. 

 [3] Eyal S, Akselrod S. Bifurcation in a simple model of the 

cardiovascular system. Methods of Information in 

Medicine 2000; 39(2):118-121. 

 [4] Eyal S, Almog Y, Oz O, Eliash S, Akselrod S. 

Nonlinear dynamics applied to blood pressure control. 

Autonomic Neuroscience-Basic & Clinical 2001; 89(1-

2):24-30. 

 [5] Grassberger P, Procaccia I. Measuring the strangeness of 

strange attractors. Physica D 1983; 9:189-208. 
Another result seen in the study of the effect of G  

on the dynamics was that the simulated BP signal that 

was produced with the post bifurcation G , showed 

enhanced oscillation at 0.1Hz, known as Mayer waves. 

These findings are in agreement with [7], which also 

suggested that the Mayer waves could be explained as 

gain induced oscillations.  

α

α

 [6] Mrowka R, Stauss HM, Wagner CD, Nafz B, Patzak A, 

Persson PB. Non Linear analysis of the cardiovascular 

control system in rat strains with differing hemodynamic 

characteristics. In: Murry A, Arzbaecher R, editors. 

Comupers in Cardiology 1995. Piscataway, NJ USA: 

IEEE, 1995:313-5. 

 [7] Abbiw-Jackson RM, Langford WF. Gain-induced 

oscillations in blood pressure. Journal of Mathematical 

Biology 1998; 37(3):203-234. 

In conclusion, we have shown that even a simple 

model of the CVS exhibits dynamical behavior, which is 

characteristic to nonlinear systems. Many parameters 

such as:  level of noises, gains, and respiration 

parameters, were shown to have an effect on 
2

D . 

However  the  sensitivity  of  
2

D   to  variations  in   these  

 

Address for correspondence. 

 

Solange Akselrod.  

School of Physics and Astronomy 

Tel-Aviv University, Tel-Aviv, 69978 Israel. 

E-mail: solange@post.tau.ac.il 

 

796


