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Abstract

In this study, the IPFM model is extended to account

for the presence of ectopic beats and heart rate turbulence

(HRT). Based on the model extension, a new approach to

characterize HRT is presented based on a set of Karhunen-

Loeve (KL) basis functions. The three most significant

basis functions possess attractive physiological interpreta-

tions which reflect the difference in heart rate prior to the

ventricular ectopic beat (VEB) compared to after HRT, an

“average” HRT, and a delayed “average” HRT, respec-

tively. HRT detection is based on the IPFM model exten-

sion, and involves a test statistic that results from a linear

model. The HRT test statistic was studied on patients who

underwent hemodialysis treatment. The goal was to dis-

tinguish between patients considered to be hypotension-

resistant (HtR) and hypotension-prone (HtP). The results

show that the test statistic of the two groups formed two

non-overlapping clusters. The HtR-cluster exhibited much

larger values than did the HtP-cluster (mean values 51 and

2, respectively), suggesting that HRT is mostly present in

HtR patients.

1. Introduction

It has recently been demonstrated that HRT is a pow-

erful predictor of mortality after acute myocardial infarc-

tion [1, 2], and offers considerable potential in other clini-

cal issues as well [3]. Several parameters for HRT charac-

terization have been presented of which turbulence onset

(TO) and turbulence slope (TS) are the most commonly

employed. While both these parameters have proven to

be useful, they are heuristic in nature and do not relate

to recent techniques for analysis of heart rate variability.

Therefore, the purpose of the present paper is to develop

model-based signal processing techniques for HRT char-

acterization.

Based on an extension of the IPFM model, we present

an approach which involves a set of KL basis functions.

These functions express HRT as a function of time, as op-

posed to existing HRT measures which are based on the

RR interval tachogram. The KL representation is then used

in a HRT detection procedure.

The clinical goal of the present study is to investi-

gate whether HRT can be used to distinguish between

hemodialysis patients considered to be HtR and HtP, as-

suming that HRT is present in HtR patients, but not in HtP

patients.

2. Background

2.1. HRT analysis

The short-term fluctuation in heart rate which follow

a VEB is referred to as HRT [1, 2]. In normal subjects,

the heart rate should increase and then decrease to base-

line, immediately after a VEB. The increase in heart rate

is probably due to compensation of the sudden local drop

in blood pressure induced by the VEB. Once blood pres-

sure is restored, heart rate returns to baseline in order to

stabilize blood pressure. Thus, HRT is desirable in normal

subjects, and the subjects’ ability to recover from a local

decrease in blood pressure is reflected by the degree of tur-

bulence.

The degree of turbulence may be characterized with the

parameters TO and TS. The former parameter reflects the

initial acceleration in heart rate and the latter the decel-

eration of heart rate back to baseline. In particular, TO is

the relative change of RR intervals immediately before and

after a VEB. The parameter TS is defined by the steepest

slope observed over five consecutive RR intervals in the

first 15 RR intervals following the VEB.

2.2. IPFM model and heart timing signal

The IPFM model generates a series of occurrence times

for normal sinus beats with known rate variability, and re-

flects basic electrophysiological properties of the sinoatrial

node [4, 5]. The input signal to the IPFM model is the

sum of a DC level, accounting for average heart rate, and a

modulating signal, m(t), accounting for variability due to
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parasympathetic and sympathetic activity. The input sig-

nal to the IPFM model is integrated until a threshold, T0,

is reached, representing the mean interval length between

successive events. Then, an event is created at time tk as

the output of the model, and the integrator is reset to zero.

As a result, the output signal of the IPFM model becomes

an event series which represents the beat occurrence times.

In mathematical terms, the following equation defines the

series of event times,
∫ tk

0

(1 + m(τ))dτ = kT0 k = 0, . . . , K, (1)

where k is an integer that indexes the kth beat following

the initial event. The initial event is assumed to occur at

t0 = 0.

The heart timing signal dHT (t) is at time tk defined as

the difference between the expected occurrence time at the

mean heart rate, kT0, and the event time tk [6]. The heart

timing signal is closely related to the IPFM model and its

modulating signal m(t) [5].

3. Methods

3.1. Extended IPFM model

The physiological influence of a VEB may be viewed

as a reset of the charging potentials in the sinoatrial node.

In order to incorporate such a property in the IPFM model,

the integrator is reset at the occurrence time tel correspond-

ing to the lth VEB, see Fig. 1. Hence, this modification ac-
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Figure 1. An overview of the extended IPFM model.

counts for the very presence of VEBs in the generation of

occurrence times of normal sinus beats.

In order to account for the related HRT phenomenon,

an additional feedback is introduced in the model. Physio-

logically, the HRT is triggered by the local diastolic blood

pressure drop at tkl+1 induced by the VEB. The occur-

rence time of the first normal sinus beat that follows the

lth VEB is denoted tkl+1. Thus, HRT is incorporated in

the IPFM model, with feedback from the output of the

IPFM model (the occurrence time of normal sinus beats,

tk) to the baroreceptors, see Fig. 1. When an HRT is trig-

gered, the baroreceptors generate an impulse at tkl+1 to

a linear system with impulse response hl(t), where hl(t)
is the HRT associated with the lth VEB, see Fig. 1. The

summation, s(t), of all different HRTs caused by different

VEBs

s(t) =

Ne
∑

l=1

hl(t − tkl+1), (2)

is then added to the input of the integrator of the IPFM

model, see Fig. 1; Ne denotes the number of VEBs.

The impulse response hl(t) is causal and reaches zero

when the turbulence effect has vanished. It is assumed that

hl−1(t−tkl−1+1) reaches zero prior to the onset of the next

HRT hl(t − tkl+1). One way to represent different HRTs

is as a linear combination of basis functions,

hl(t) = b
T (t)θl, (3)

where b(t) = [b1(t), b2(t), . . . , bp(t)]
T contains p basis

functions and θl is a p × 1 weight vector associated with

the lth VEB.

3.2. Karhunen-Loeve basis functions

In this study, data-dependent basis functions were con-

sidered and, in particular, the KL basis functions which are

optimal for a given set of data. The KL basis functions are

obtained from the eigenvalues and eigenvectors of the data

covariance matrix Rx that results from subjects with HRT.

Before calculation of Rx, each subject’s HRT is scaled in

time with respect to mean heart rate. Thus, it is assumed

that the duration of the HRT depends on heart rate. For

each subject, the mean RR interval, T̃0, is estimated from

the 10 RR intervals that precede a VEB,

T̃0 =
1

Ne

Ne
∑

l=1

tkl
− tkl−10

10
, (4)

where tkl
is the occurrence time of the normal sinus beat

immediately prior to the lth VEB. For all subjects, the over-

all mean T̃0, denoted T 0, is determined.

For each subject, Rx is determined from the available

HRTs. In order to obtain an HRT estimate, an estimate

of the zero mean input x(t) to the IPFM model is derived

from the first order difference of dHT (t) according to

d

dt
dHT (tk) = x(tk) =

T̃0

tk − tk−1

−1 k = kl+2, . . . .

(5)

where x(tkl+1) = 0, with tkl+1 being the trigger time of

the HRT. From x(t), Ne different input signals to the IPFM

model, xl(t), associated with the lth VEB, may be obtained

according to

xl

(

T 0

T̃0

tk

)

=

{

0 k = 0, . . . , kl

x(tk) k = kl + 1, . . .,
(6)

906



where each subject’s time vector is scaled with T 0/T̃0 in

order to allow comparison of HRTs from different subjects.

An N × 1 vector xl is then obtained from interpolation

of (6) followed by resampling of xl(t) starting at the time
T 0

T̃0

tkl+1, using a sampling rate of Fs Hz, in order to assure

that xl contains the HRT from the very first sample. The

sample covariance matrix Rx of one subject is obtained by

Rx =
1

Ne

Ne
∑

l=1

xlx
T
l . (7)

Finally, the mean covariance matrix Rx is determined

from the different Rx:s.

The p most significant eigenvectors of Rx are chosen as

the discrete representation of the p different basis functions

contained in b(t). Thus, the discrete representation of (3)

becomes

hl = Bθl, (8)

where hl is an N×1 vector with the discrete representation

of the HRT associated with the lth VEB, and B is an N ×p
matrix with the p most significant eigenvectors given by

the columns,

B =











b
T (0)

b
T ( 1

Fs
)

...

b
T (N−1

Fs

)











. (9)

Note that the first sample is associated with t = 0.

3.3. HRT detection

Our approach to detect and characterize HRT is based

on the extended IPFM model and, in particular, the HRT

response is modeled by Bθ. The detection procedure is

formulated as one in which the HRT is either absent (hy-

pothesis H0) or present (hypothesis H1),

H0 : x = m

H1 : x = Bθ + m.
(10)

Furthermore, x is an N × 1 vector with the observed data,

m is an N × 1 vector with random white noise with Gaus-

sian PDF N (0, σ2
I), where σ2 is unknown, B is a known

N × p (N > p) orthogonal matrix, and θ is a p× 1 vector

with unknown weights. The test statistic, T (x), from the

generalized likelihood ratio test (GLRT) of a linear model,

assuming that the noise variance is unknown, is used for

the detection of HRT [7, 8]. Thus, H1 is decided if

T (x) =
N − p

p

θ̂
T

H1
θ̂H1

xT (I − BB
T )x

> γ′, (11)

where θ̂H1
= B

T
x is the maximum likelihood estimate

(MLE) of θ under H1, and γ′ is a threshold found from a

given probability of false alarm.

3.4. HRT averaging

In contrast to existing HRT studies, this study does not

assume that the HRT is averaged, i.e., θl is estimated from

a single VEB, viz., the lth VEB. However, averaging is usu-

ally adopted in HRT detection in order to improve perfor-

mance, so that x in (11) instead is given by

x =
1

Ne

Ne
∑

l=1

xl. (12)

4. Data sets

From the European ST-T database thirty-one patients

with myocardial ischemia and isolated VEBs were used as

learning set for the KL basis functions. A total of 84 VEBs

were selected from the 31 patients considered. The vec-

tor xl resulted from resampling of xl(t) with Fs = 2 Hz

during a time interval of 10 seconds, i.e., N = 21. The

three most significant KL basis functions were chosen as

columns in B, i.e., p = 3.

The HRT test statistic in (11) was studied on a tar-

get data set which consisted of patients with end-stage re-

nal failure who underwent regular hemodialysis treatment

three times a week. The goal was to distinguish between

patients considered HtR and HtP (five patients in each

group). Before the ECG was recorded, a physician clas-

sified each patient into one of the two groups. The physi-

cians decision was based on the patient’s clinical history,

such as the number of hypotension episodes per month.

The ECG were acquired during clinical treatment at Park

Dialys (Lund, Sweden) and Helsingborg Hospital (Swe-

den), lasting from 3 to 5 hours; all patients in the target set

had isolated VEBs.

5. Results

In order to assure that the ischemic patients exhibit

HRT, an averaged RR interval tachogram from the 84

VEBs was determined. The parameters TO and TS were

determined, resulting in −0.4% and 3.2 ms/RR interval re-

spectively.

The three most significant KL basis functions ac-

counted together for 91% of the total energy. These three

functions possess attractive physiological interpretations:

the most significant basis function have the shape of a step

function, the second reflects the “average” HRT, and the

third reflects a delayed “average” HRT, see Fig. 2. It is

common that the heart rate prior to a VEB and after the

HRT differ. This offset in heart rate is reflected by the

first basis function, e.g., a positive weight indicate a higher

heart rate after the HRT than prior to the VEB. The sig-

nificance of the first basis function is obscured when the
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Figure 2. The three most significant KL basis functions,

weighted with their respective eigenvalues. The 1st KL ba-

sis functions is the most significant, and so forth.

averaged HRT is obtained from several VEBs, since the

offset tends to by cancelled out by averaging.

The HRT test statistic in (11) was calculated for the ten

hemodialysis patients in order to evaluate its performance.

The averaged HRT from each patient obtained according to

(12) was used in the calculation of the test statistic. Finally,

an asymptotic p-value from the Kolmogorov–Smirnov test

between the T (x)-values from HtR and HtP patients were

determined. The results show that the HRT test statistics of

the two groups formed two non-overlapping clusters. The

HtR-cluster exhibited much larger values than did the HtP-

cluster: mean values 51 and 2, respectively, see Table. 1,

indicating that HRT is present in HtR patients only. There

was a significant difference between the two clusters (p-

value: 0.0038), suggesting that the test statistic can be used

to distinguish between HtR and HtP patients.

Table 1. HRT test statistics for HtR and HtP patients with

their asymptotic p-value. Values are given in mean ± std.

HtR HtP p-value

T (x) 51 ± 53 2 ± 1 0.0038

6. Conclusions

This paper presents new model-based signal process-

ing techniques for HRT characterization, based on an ex-

tended IPFM model and a set of KL basis functions. The

presented HRT procedure does not only provide further in-

sights on the HRT phenomenon, but also relates to heart

rate variability through the IPFM model and the heart

timing signal. The results show that HRT is present in

hemodialysis patients considered to be HtR but not in HtP.
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