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Abstract

Chaos and fractal based measurements, such as De-

trended Fluctuation Analysis (DFA), have been widely

used for quantifying the Heart Rate Variability (HRV) for

cardiac risk stratification purposes. However, the physio-

logical meaning of these measurements is not clear. Given

that existing lumped parameter models contain a detailed

physiological description of several of the circulatory sys-

tem regulation processes, we hypothesize that controlled

changes in these processes will highlight the physiologi-

cal basis in DFA indices. We used a detailed lumped pa-

rameter model of HRV, introduced earlier [6]. Ten sig-

nals were generated in different physiological conditions.

DFA coefficients α1, α2, and the Hurst exponent, were cal-

culated. A clear disruption point was always observed.

Modifications in sympatho-vagal activity yielded signifi-

cant changes in α1 when compared to basal, but not in

α2 or Hurst exponent. Modifications in non-nervous sys-

tem mediated changes yielded significant differences only

for peripheral resistance and heart period, only in α1. In

conclusion, the analysis of the effect of changes in the reg-

ulatory system on the HRV chaotic/fractal indices can be

analyzed using detailed lumped parameter models.

1. Introduction

During the last years, Heart Rate Variability (HRV) sig-
nal has been widely studied by using a number of proposed
indices, which were proposed for characterizing nonlin-
ear dynamics systems from Chaos Theory, fractal series
analysis, and Information Theory [1]. Also, many clini-
cal trials have tried to show these indices being useful for
cardiac risk stratification in different cardiopathies [2, 3].
However, despite the high number of technical and clinical

studies, these indices are not being currently used in the
clinical practice for risk stratification purposes, which can
be due, at least, to two main issues. First, the validity of the
nonlinear dynamic analysis has been severely questioned.
For instance, the requirements for using these techniques
have been often obviated or loosely checked, in terms of
the presence of chaos [4], and it has been pointed out that
HRV should not be handled as a low-dimensional chaotic
signal [5].

Hence, the use of nonlinear indices is usually justified
by considering them as numerical indices, which are sup-
ported by clinical studies in large-scale patient data bases
[4]. However, the second issue is, in fact, the difficult
clinical interpretation of changes in these indices. The
simplified explanation that higher index values correspond
to higher physiological complexity, which is associated to
health, whereas lower index values correspond to pathol-
ogy, is not always easy to interpret [4]. Moreover, one of
the main advantages of these indices is that they compress
all the observable regulation dynamics in a single numer-
ical index, but also it is not easy to determine physiologi-
cal relationships between the change in the index and the
physiopathological causes. In summary, nonlinear indices
are used like black-box indicators, supported by clinical
trials, but with no clear physiological meaning.

Therefore, the study of the physiological meaning of
changes in nonlinear indices is necessary for their use in
the clinical practice, and we propose the use of a detailed
Lumped Parameter Model (LPM) of HRV for this pur-
pose. In particular, the model by Magosso and Ursino
in [6, 7] gives a detailed description of the cardiac short-
term regulatory loop, which contains the interconnec-
tion of autonomic nervous system and non-autonomic ele-
ments. Given the variety of proposed nonlinear indices, we
will focus only on Detrended Fluctuation Analysis (DFA),
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which has received special attention in clinical studies [3].
The scheme of the paper is as follows. In the next sec-

tion, we briefly review the DFA algorithm for HRV anal-
ysis. Then, Section 3 summarizes the LPM for short-term
HRV modeling. Results are reported for basal situation,
modification of sympato-vagal activity, and modification
of non-autonomic regulation. Finally, conclusions and fu-
ture directions are presented.

2. Algorithm

Many nonlinear systems give rise to time series which
are complex geometric objects, related with scaling and
fractality, but where the concept of phase space attractor
can not be successfully used. Dynamical systems that are
governed by ordinary differential equations yield contin-
uous and derivable signals, but there exist stochastic and
deterministic processes that can yield difficult-to-handle
signals, which are continuous but no derivable. These sig-
nals are either fractals, or other kind of scale invariant ob-
ject, and they require a special treatment because they of-
ten are not recurrents and, hence, must be considered as
non-stationary (see [8] for details).

In [1], an algorithm was proposed for obtaining expo-
nent α of a time series from a discrete-time process with
length N samples. For HRV signal, x[n] is the nth in-
terval between consecutive beats. The time series is first
integrated, which corresponds to the following sum,

y[n] =

n
∑

i=1

(x[i] − xave) (1)

where xave is the averaged value of x[n]. The integrated
signal is divided into equal-length segments i, and a least
squares linear regression is adjusted for each of them. Co-
ordinate y of the linear adjusted line to each segment is
denoted by yi[n], and it represents the linear trend for that
segment. Then, the trend of the integrated signa y[n] is
canceled by subtracting local trend yi[n] at each segment.
The fluctuation of the detrended integrated series is quan-
tified by

F [i] =

√

√

√

√

1

N

N
∑

n=1

(y[n] − yi[n])
2 (2)

This calculation is repeated for every scale (segment
lengths), yielding a relationship between F [i], the aver-
aged fluctuation, and the size (number of beats) of the seg-
ment. Typically, F [i] will increase with box size n, and
a linear relationship in a log-log graph will indicate the
presence of scaling. Under these conditions, fluctuations
are characterized by a scaling exponent that is the slope of
the linear regression between fluctuation and segment size.

If inter-beat values are absolutely uncorrelated with pre-
vious ones (white noise), integrated signal y[n] corre-
sponds to a random walk, with α = 0.5. If there are
only short-term correlations, the initial slope can be dif-
ferent from 0.5, but α will approach 0.5 for larger window
sizes. An exponent 1 ≥ α > 0.5 indicates power law, short
term, persistent correlations, such as a long (compared to
the mean) interval is most likely followed by a long in-
terval, and vice versa. In contrast, 0.5 > α > 0 indi-
cates anti-persistence, and large and small values are more
likely alternating. The special case α = 1 corresponds to
1/f noise. For α ≥ 1, correlations still exist, but they
are no longer a power law, instead we have super-diffusion
processes, characteristic of systems where active transport
is present. The particular case of α = 1.5 corresponds
to integrated Brownian noise. Also, α can be seen as a
roughness indicator of the original time series: the larger
the index, the smoother the time series, and 1/f noise can
be interpreted as a trade-off between the complete unpre-
dictability of white noise (rough aspect) and the smooth
aspect of Brownian noise.

3. Model

A mathematical model was proposed in [6] aiming to
clarify the variability in cardiovascular parameters and to
test existing theories in a quantitative way. Previously pro-
posed models for HRV were often oversimplified; specif-
ically, the cardiac dynamic of heart and vessels, as well
as the action and regulation mechanisms, do not always
reflect the current knowledge about HRV. A short-term
regulation model was proposed for analyzing the possible
mechanisms that produce fluctuations of the heart period,
which extended precedent models [7] by incorporating: (1)
distinction between pulmonary and systemic circulation;
(2) sympathetic feedback control loops, acting on the sys-
temic resistance, the rest volume, and the cardiac contrac-
tility; (3) symphato-vagal control of heart period; (4) me-
chanical effect of breathing on the venous return; and (5)
a very low frequency (VLF) vasomotor term. These as-
pects were simulated on the basis of existing, previously
reported clinical and experimental data.

The hydraulic equivalent of the cardiovascular system
model in [6] included a sympathetic regulation mechanism
acting on a generic effector, for instance, the peripheral re-
sistance in the systemic vascular bed. Both information
sources from the receptors were summed, and passed to
a static sigmoid, a delay, and a first order filter. The reg-
ulation loop of heart period was different from the other
effectors, because there was an equilibrium between the
vagal and the sympathetic branches. The model contained
24 state equations, describing the vascular system (9 eqs.),
the left heart (3), the right heart (2), pressure at the thorax
(1) and at the abdomen (1), peripheral resistance (2 plus a
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Figure 1. Example of HRV signal from the LPM, and
supporting graphs for the measured indices.

noise term), sympatho-vagal equilibrium (2), venous vol-
ume (2) and elastance control (2). All of these elements
allow us to study the changes in DFA with well-defined
situations.

4. Results

Ten signals were generated in different physiological
conditions, and DFA coefficients α1, α2, and the Hurst ex-
ponent, were calculated for them. Stationarity and surro-
gate analysis was first analyzed for the basal situation in
[6]. The following chronic situations were explored:
A: Indices in basal situation.
B: Indices when modifying mechanisms in the LPM re-
lated to the sympatho-vagal balance, in particular:
• B1/B2: Increase/decrease of sympathetic tone in 20%.
• B3/B4: Increase/decrease of vagal tone in 20%.
• B5: Increase and decrease in both in 20%.
• B6: Increase of noise level in VLF.

C: Indices when modifying regulation different form au-
tonomous nervous system, in particular:
• C1/C2: Increase/decrease of peripheral resistance

slope in 50%.
• C3/C4: Increase/decrease of rest volume in 50%.
• C5/C6: Increase/decrease of contractility in 50%.
• C7/C8: Increase/decrease of heart period in 50%.
Basal Situation. Given that the simulation was made

at a sampling rate of 10 ms, it was limited to 33.3 sec-
onds (2000 samples after decimating). This represented a
limitation when comparing to previous results in 24 hours
recordings, and hence, should be considered as comparable
as a first approach to short-term characterization. Figure 1
shows an example of HR signal obtained in basal situation.
Due to its short duration, calculation of 1/f spectrum is
not comparable to 24 hour spectra. Note that α1 and α2
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Figure 2. Changes in the sympatho-vagal balance on LPM
generated signals. Symbol ∗ indicates significant differ-
ences (95%) when compared to basal situation.

are rather different in the LPM when compared to previ-
ously reported values in the clinical setting. Specifically,
α1 increases close to (but slightly below) 1.5 and α2 falls
close to (but slightly above) 0.5, which indicates that the
model is not yet closely comparable to the physiological
in this setting. In fact, α1 points to a value of a short-
term persistent movement, whereas α2 trends to Gaussian
noise. Nevertheless, a positive result is the clear disruption
point between both DFA exponents. Stationarity analysis
was made by splitting the signals in two segments. Signif-
icant changes appeared in α2 (t-test with 95% confidence),
which pointed to the presence of non-visible transients that
affected this long-term index. Non-linear dynamic analysis
with surrogate signals did not yield any significant differ-
ence when compared to linear dynamics being present.

Modification of Sympatho-vagal Activity. Figure 2
shows that all the changes in the sympatho-vagal con-
trol were significant in α1, with the index increasing both
with sympathetic activation or vagal deactivation, and vice
versa. While recalling the limitations of physiological sim-
ilarity with the LPM, this result should be in contrast with
the general idea of lower vagal and higher sympathetic
tones in post-infarction patients being associated to a lower
complexity in pathological conditions. The fall in α1 close
to 1 when increasing VLF tone can be seen as a structure
loss due to the noise level in the system.
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Figure 3. Changes in the regulation on LPM generated
signals. Symbol ∗ indicates significant differences (95%)
when compared to basal situation.

Changes in α2 are not significant, indicating that this in-
dex could be more insensitive to changes mediated by au-
tonomous nervous system, except for B5 (the most severe
autonomic tone modification). No significant differences
in H index were observed, but its changes occurred in the
opposite (same) direction to α1 (α2).

Modification of Non-autonomous Regulation. We stud-
ied the influence of (chronic) changes in regulation with
non-autonomous regulation. It should be kept in mind that
the existence of feedback loops makes it difficult to deter-
mine whether changes in the indices are due to changes in
the autonomous system that are just secondary to changes
in regulation, and hence we limited ourselves to analyze
the sensitivity of DFA indices to those changes.

Figure 3 shows significant differences in α1 due to
changes in peripheral resistance and with the same direc-
tion. Also, changes in heart rate (inverse of heart period)
yielded a qualitatively similar trend in α1. The other mod-
ifications did not yield significant changes. Index α2 was
significantly affected by the decrease in peripheral resis-
tance, but not by the increase, which can be due to a satu-
ration effect. Index H did not show significant differences.

5. Conclusions

A previously proposed LPM has been used to analyze
the physiological meaning of DFA indices in HRV. The

model contained a short-term description, so that only
short-term related indices can be properly studied. The
nonlinear behavior of the HRV signals generated by the
model could not be sustained by surrogate analysis, and
the results should be cautiously interpreted in a clinical
setting. Nevertheless, the possibility of analyzing physi-
ological cardiac regulation in nonlinear indices is still an
interesting subject to explore.

Inclusion of long-term regulation mechanisms will com-
plement the LPM description, and it is mandatory for long-
term related HRV indices, which is usually the case of non-
linear HRV indices. Also, a description of the effect of
ectopic beats in the cardiac cycle regulatory loop is recom-
mendable for this purpose.
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