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Abstract

The powerline interference reduction in ECG records is

a challenging problem which is still open for research. The

powerline signal, measured directly from the transmission

line may have amplitude, phase and frequency variations.

These reasons make the classical filtering methods sub–

optimal in the powerline interference reduction. We pro-

pose a tracking method based on Kalman filtering which

uses an state space model for the noisy signal and allows

adequate discrimination between the ECG signal and the

perturbation, even during non–stationarities. The parame-

ters of this algorithm are optimized via genetic algorithms,

obtaining a set of values that give it a mean correlation

index on the QT database over 0,99.

1. Introduction

The sinusoidal interference reduction on a time series

such as electrocardiogram (ECG) is a serious restriction

which still is an open research topic. The powerline in-

terference is particulary annoying in medical systems, be-

cause can totally mask the signal of interest rendering it

useless for heart condition diagnosis. Most of the works are

founded on the fact that the sinusoidal signal is an station-

ary process [1]. However, the powerline signal, measured

directly from the transmission line, has variations in am-

plitude, frequency and phase, along with the presence of

harmonics with time–varying characteristics as well [2].

In this sense, the filtering of these interferences also re-

quires tracking of their parameter variations. Particularly,

an approach to remove the powerline interference consists

on the estimation of amplitude and phase in an isoelectric

segment, followed by subtraction of the estimated sinusoid

within the entire heartbeat [3]. The performance of this

approach, known as estimation–subtraction (E–S) method,

deteriorates when parts of the P or Q wave are included in

the segment. The sinusoid is subtracted not only from the

interval in which it is estimated, but also for the remaining

parts of the heartbeat. Such beat–to–beat oriented proce-

dure implies, however, that sudden shifts in amplitude may

occur in the output signal at the boundaries of successive

beats [3]. A different approach consists on a non–linear

least minimum squares algorithm which estimates the am-

plitude, frequency and phase of a non-stationary sinusoid

(non-linear adaptive estimator of non-stationary sinusoids

NAENS) [4], and that has been adapted to reduce the po-

wer line interference on ECG. It has been shown that it is

a simple and fast estimation procedure, but with modest

performance for cases of low signal to noise ratios.

The principal shortcomings of these algorithms, based

on least minimum squares, come from their lack of robust-

ness in the estimation procedure and insufficient discrimi-

nation between the ECG signal and the powerline interfer-

ence. These factors motivate the application of more effec-

tive estimation algorithms such as the Kalman filter, which

has the ability to separate the signal components from

noise, and overcome the difficulties of non–stationarity [5].

This can be carried out using a proper model to describe a

sinusoidal signal, which is applied to the Kalman filter.

In this paper, we propose a tracking method, based on

Kalman filtering, which uses an state space model for the

noisy signal, and allows adequate discrimination between

the ECG signal and the perturbation even during non–

stationarities. Specifically, a model, which was proposed

to track the amplitude, frequency and phase of a quasi–

stationary sinusoid [6, 7], is used to reduce the powerline

interference by adding another state encoding the ECG dy-

namics. Kalman filtering parameters are tuned by means

of a simple genetic algorithm (SGA) that explores the pa-

rameter space related with the correlation index of the fil-

tered records of the QT database. As a result, it is shown

that the efficiency of the proposed filter, with optimized

parameters, overcomes the performance of the estimation–

subtraction and NAENS algorithms for stationary interfer-

ence and assuming both amplitude and frequency changes,

as well. Moreover, performance of the filter turns to be

high for a large span of parameters.
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2. Methods

2.1. Model for signal and interference

The following nonlinear signal model describes the evo-

lution of noisy quadrature data with a slowly time-varying

frequency [6, 7, 8]:

x1[n + 1] = x1[n] cos(x3[n]) − x2[n] sin(x3[n]) + wa[n]

x2[n + 1] = x1[n] sin(x3[n]) + x2[n] cos(x3[n]) + wa[n]

x3[n + 1] = (1 − ǫ)x3[n] + wf [n]

x4[n + 1] = x4[n] + wecg[n]

y[n] = x1[n] + x4[n] + v[n], n ∈ Z, (1)

where x3 is a unknown time–varying frequency, x1 and

x2 are in–phase and quadrature signals. The ECG sig-

nal is encoded in the state x4 as a first order autoregres-

sive process, whose spectral density has high resemblance

with the spectral density of the ECG signal. Besides,

w[n] = [wa[n] wa[n] wf [n] wecg[n]]⊤ is white Gaussian

noise with zero mean and covariance matrix, defined as:

E{w[n]w⊤[m]} =

{

Q, n = m;

0, n �= m.
(2)

Q =









σ2

a 0 0 0
0 σ2

a 0 0
0 0 σ2

f 0

0 0 0 σ2
ecg









and v[n] is white Gaussian noise with zero mean and vari-

ance, defined as:

E{v[n]v⊤[m]} =

{

r, n = m;

0, n �= m.
(3)

The parameter ǫ ≥ 0, typically ǫ ≪ 1, has the goal of

enforcing stability into Eq. (1) and determines the rate of

time variation of x3. It should be chosen so that the fre-

quency varies slowly enough to make the signal appear pe-

riodic over several cycles.

The procedure to extract the sinusoid from ECG in-

volves the estimation of the clean ECG signal and the in-

terfering sinusoid from the original noisy signal with the

extended Kalman filter1 using the state space model de-

scribed in Eq. (1). Then, the clean ECG signal can be ex-

tracted from the fourth state x4[n].
The Kalman filter has three parameters related to the

convergence and noise rejection capabilities of the estima-

tion. They are process noise covariance Q, measurement

noise variance r and initial error covariance P. It is shown,

that the elements of Q and r are related by the quantity

λ = r/σ2 [7]. In this way, when λ increases the error vari-

ance diminishes, however, its tracking ability deteriorates;

1For a complete description of the extended Kalman filter, see [5]

in opposition, when λ decreases, the tracking process be-

comes more robust for state variations, but the error vari-

ance grows.

The process noise covariance is composed by three con-

stants σ2

a, σ2

f and σ2

ecg . The first one is the variance of

the noise of the amplitude process, the second term is the

variance of the noise of the frequency process while the

third term is the variance of the useful ECG signal. Thus,

λa = r/σ2

a, λf = r/σ2

f and λecg = r/σ2

ecg , which are

selected depending on the expected characteristics of the

filter.

On the other hand, the components of P adjust the con-

vergence rate of the filter. Its values should be large for

fast convergence, but may lead to divergence if the initial

estimated state is close to the real state; by contrast, set-

ting small values will give more stability with long conver-

gence time. Tuning of this parameters is generally carried

out empirically. In this case employment of a GA is pro-

posed in order to optimize the performance of the filter in

some sense, as described in the following section.

2.2. Parameter tuning by genetic algorithms

The genetic algorithm used, the Simple Genetic Al-

gorithm (SGA), is a method to move through chromo-

somes populations using a sort of natural selection and

the crossover and mutation operators, inspired by genet-

ics. Each possible combination of Kalman filter parameters

can be codified in a finite length chain, known as chromo-

some. In [9] is shown that the best form of chromosome is

a binary chain, as follows:

c = [C{λ∞}, . . . , C{λM}] (4)

where c is the resulting chromosome and C is an operator

of conversion to binary system.

The initial population P0 = {c1, . . . , cr} of r chromo-

somes is generated randomly. The parameter r, or initial

population length, is a control parameter to be tuned in or-

der to get a proper performance of the SGA. Then the selec-

tion of best chromosomes is done assigning to each indi-

vidual a fitness value by means of a ranking function [10].

Particularly, exponential ranking is considered, which, af-

ter ordering the individuals from 1 to r (where 1 is the

worst qualified and r is the best qualified), assigns a qual-

ity value according to f(ci) = sr−i where s ∼ 1. Based

on this quality value, the fittest individuals are chosen by

means of stochastic sampling [11].

Then, the recombination process is accomplished for

random paired chromosomes having a χ probability. The

SGA uses single point recombination, which consists of

two chains for a single random sampled point to exchange

chain segments. After recombination, a mutation operator

is applied for a µ probability value, which is done by bit
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negation. The probability amounts, χ and µ, are also con-

trol parameters. The selection, recombination and muta-

tion stages are sequentially repeated until 95 % of the pop-

ulation have converged to a solution chromosome [12].

3. Experimental setup and results

Database: The QT Database includes ECG recordings

which were chosen to represent a wide variety of QRS and

ST-T morphologies, in order to challenge ECG signal pro-

cessing algorithms with real-world variability. The records

were chosen primarily among existing ECG databases

which are a wide source of varied and well characterized

data, including reference annotations marking the location

of waveform boundaries. The QT Database contains a to-

tal of 105 fifteen-minute excerpts of two channel ECGs,

selected to avoid significant baseline wander or another ar-

tifacts. All records were sampled at 250 Hz. Those which

were not originally sampled at that rate were converted us-

ing a sub–sampling software.

Simulation of powerline interference: The QT

database records are artificially contaminated with the fol-

lowing power line interference model:

y[k] = A[k] sin

(

2πf [k]

fs

k + φ0

)

where A[k] = A0 + ξA[k] and f [k] = f0 + ξf [k], A0 and

f0 are amplitude and base frequency, and ξA[k] and ξs[k]
correspond to white Gaussian noise, which represent the

variations about these base quantities. The value for A0 is

set according to the signal to noise ratio, while f0 is the

powerline frequency.

Test description: The proposed algorithm is tested filte-

ring the contaminated records of the QT database. The fil-

ter’s performance is measured with the correlation index,

defined as [13]:

ρxy =
Cxy

√

CxxCyy

where Cxy , is the cross–covariance of x and y, and Cxx

is the covariance of x. To know the filter’s response for

different ECG morphologies, this index is measured on the

entire QT database. For sake of benchmarking, we also do

this test with E–S [3] and NAENS [4].

3.1. Parameter settings

The parameter space is obtained as the mean and vari-

ance of the correlation index of the original and filtered

records of the QT database for different parameter combi-

nations. The optimized parameters are λa and r. In Fig.1

the parameter space for a signal to noise ratio of 3 dB
is shown. The genetic algorithm uses the information of

this surface to obtain a search space. The final optimized

parameters are λa = 10−3 and r = 10−3 with a corre-

lation index ρ = 0,9975, for ǫ = 0, λf = 5 × 10−5,

λecg = 0,1λa.
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Figure 1. Mean correlation for parameter space.

3.2. Filtering results

Figures 2(a)-(d) show the correlation index of the

records of the complete QT database by means of boxplots,

which show the dispersion around the median correlation.
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(d)Joint variations.

Figure 2. Correlation index for the QT database.

Figures 3(a), (b) and (c) show the filtering results of

NAENS, E–S and the proposed algorithm. Figure 3(a)

shows the filtering results on a normal segment of ECG

signal with SNR = 3 dB stationary powerline interfer-

ence. Figure 3(b) shows the behavior of the filters during

an amplitude change. In this simulation, initially there is no

interference and at t = 3,8 s the interference’s amplitude

gradually increases. Figure 3(c) shows the behavior of the

filters during a frequency change. Here, the frequency of
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(b)Amplitude transient.
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Figure 3. Filter response for different situations.

the powerline interference changes from 60 Hz to 61 Hz
at t = 3,8 s.

4. Discussion and conclusions

The proposed non–stationarity tracking approach for the

powerline interference by means of Kalman filtering al-

lows improved discrimination between the ECG signal and

the perturbation. This method properly reduces this inter-

ference during its stationary segments and keeps its high

performance during amplitude, frequency and joint varia-

tions. One of the main shortcomings of the Kalman filter

methods, the parameter setting, was proposed to be solved

with the implementation of a SGA, obtaining a set of pa-

rameters, being optimal in the correlation index sense. The

search surface shows that the EKF powerline interference

suppressor has high performance in a large span of the pa-

rameter space. The database tests show that this set of pa-

rameters is optimal for the enclosed ECG morphologies.
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[2] Sedlàcek M, Blaska J. Low uncertainty power-line frequen-

cy estimation for distorted and noisy harmonic signals. El-

sevier Measurement 2004;.

[3] Sörnmo L, Laguna P. Bioelectrical Signal Processing in

Cardiac and Neurological Applications. Elsevier Academic

Press, 2005.

[4] Ziarani A, Konrad A. A nonlinear adaptive method of elim-

ination of power line interference in ECG signals. IEEE

Transactions on Biomedical Engineering 2002;.

[5] Haykin S. Kalman Filtering and Neural Networks. Adap-

tive and learning systems for signal processing, communi-

cations and control, first edition. Wiley Interscience, 2001.

[6] Scala BL, Bitmead RR. Design of an extended Kalman

filter frequency tracker. IEEE Transactions on Signal Pro-

cessing Vol 44 No 3 1996;.

[7] Bittanti S, Savaresi SM. On the parameterization and de-

sign of an extended Kalman filter frequency tracker. IEEE

Transactions on Automatic Control Vol 45 No 9 2000;.

[8] Avendaño E, Avendaño D, Castellanos C, Villegas E. Re-

duction of power line interference in ECG signals using

Kalman filtering and delta operator. 23rd ISPE Internation-

al Conference on CADCAM Robotics and Factories of the

Future 2007;2:813–817.

[9] Holland JH. Adaptation in Natural and Artifical Systems.

Ann Arbor, MI: University of Michigan Press, 1975.

[10] Zhang BT, Kim JJ. Comparison of selection methods for

evolutionary optimization, 2000.

[11] Whitley D. An overview of evolutionary algorithms: prac-

tical issues and common pitfalls. Information and Software

Technology 2001;43(14):817–831.

[12] DeJong KA. An analysis of the Behavior of a class of Ge-

netic Adaptative System. Ph.D. thesis, University of Michi-

gan, 1975.

[13] Morales RO, Sánchez MP, Ginori JL, Ábalo RG, Ramos R.
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