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Abstract

We describe an open source algorithm suite for T-Wave

Alternans (TWA) detection and quantification. The soft-

ware consists of Matlab implementations of the widely

used Spectral Method and Modified Moving Average with

libraries to read both WFDB and ASCII data under win-

dows and Linux. The software suite can run in both batch

mode and with a provided graphical user interface to aid

waveform exploration. Our software suite was calibrated

using an open source TWA model, described in a partner

paper [1] by Clifford and Sameni. For the PhysioNet/CinC

Challenge 2008 we obtained a score of 0.881 for the Spec-

tral Method and 0.400 for the MMA method. However,

our objective was not to provide the best TWA detector, but

rather a basis for detailed discussion of algorithms.

1. Introduction

The ninth annual PhysioNet/Computers in Cardiology

Challenge (PCinCC) [2] aims to improve understanding of

methods for identification and analysis of T-wave alternans

(TWA) in the ECG. The repeatability of commercial TWA

detection methods depends on the ability of researchers to

know exactly what version of software they are using, or

the exact (proprietary) algorithm. Comparisons between

clinical trials and different versions of software are there-

fore difficult. Patents, and often journal articles, do not

always present complete details of how a technique is im-

plemented, and reproduction of the technique can be time

consuming or impossible. We have therefore produced an

open source suite of algorithms that provide implementa-

tions of known standard TWA quantification techniques.

We hope that this suite will provide a benchmark against

which other TWA algorithms can be measured.

2. Methods

The algorithms and metrics chosen for inclusion in our

open source suite are available in commercial equipment

and used most often by clinicians. Our implementation is

based on descriptions found in [3] and [4].

2.1. Pre-filtering

Simple baseline wander filtering was performed. The

ECG was downsampled to 32Hz. For a given point, 25

percent of the median points in the window of 1.3 seconds

were averaged. The obtained set of values determined the

baseline level and were removed (after resampling to the

original ECG sampling frequency).

2.2. QRS and T detection

Our software uses the QRS and T-wave detection al-

gorithm of Laguna et al [5], available from PhysioNet.

For the Challenge data we used both this detector and a

commercial detector by St.-Petersburg Institute of Cardio-

logical Technics. The annotations were also manually re-

viewed and a combined set of annotations was developed.

The annotations included Q, S and T-end points.

2.3. Spectral methods

The analysis window uses 128 beats, starting from the

first labelled beat in the file. If the analysis determines

no significant TWA value was available, the window was

moved forward in time by 20 beats and the analysis is re-

peated until a significant alternans value was found or the

end of the recording was reached.

2.3.1. Beat alignment and rejection

Relative timing of points within different repolarization

cycles (i.e. successive T waves) is crucial for any TWA

algorithm to avoid introducing false TWA. The beat align-

ment algorithm consists of: 1) selection of the lead where

the alignment was performed, 2) a search for basic fiducial

points 3) template beat selection and fiducial point adjust-

ment, and 4) validation of beats in each lead.
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Peak-to-peak values on ST-T segments (from the S-

point to the T-end) among the first eight first beats were

calculated in each lead and every lead was assigned the me-

dian value of these. Leads were sorted according to these

median values. Beat alignment was then performed on the

lead with the maximum TWA value. If the alignment pro-

cedure described below fails for the chosen lead, the next

lead in the sorted list was used until a TWA value is found.

The basic fiducial point for a beat was located on the

front (i.e. a segment between a local maximum and min-

imum) with the maximum amplitude and specific orienta-

tion (i.e. up-down or down-up) on Q-S interval. The point

between the maximum and minimum with amplitude clos-

est to the middle of the front was picked. A template for

alignment was chosen among the first 10% of beats in the

analysis window. A beat was accepted as a template if it

had acceptable optimal correlations (described below) with

more than 90 percent of the beats in the analysis window.

The fiducial point for every beat was picked in the in-

terval around the basic fiducial point so as to maximize the

cross-correlation with the template beat. The fiducial point

was optimized independently for correlation on Q-S and

ST-T segment to account for QT variation. So, every beat

had two optimal correlation values. A beat was considered

acceptable if correlation on Q-S interval was higher than

0.96 and correlation on ST-T segment was higher than 0.8.

Whenever more than 10% of beats were unacceptable the

template was rejected and the procedure was repeated for

another template candidate. If none of the template candi-

dates succeeded, the procedure moved on to another lead

in the sorted list. If the procedure failed for all of the leads

the analysis window was considered too noisy or abnormal

(in rhythm) and the analysis window was moved forward

in time.

If the procedure was successful beat validation was per-

formed independently in each lead (other than the align-

ment lead). Optimal fiducial points were transferred from

the alignment lead to all other leads. In every lead other

than the alignment lead validation was performed against

all beat averages to account for the situation when the tem-

plate beat was corrupted by noise in the alignment partic-

ular lead. Beats with correlations lower than the values

mentioned above were marked as invalid. If there were

more than 10 percent of invalid beats the whole lead was

marked as invalid for the given analysis interval.

Amplitude- (as well as time-) alignment of the beats was

also performed before computing the TWA series (see be-

low) by subtracting the mean value of the Q-S segment.

Figure 1 illustrates an example of time-aligned beats.

2.3.2. Alternans series

Alternans series were computed for every lead and every

offset in the ST-T segment. The following computation
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Figure 1. Time-aligned extracted ST-T segments for a sin-

gle time series of 30 seconds. Note the two different beats

types, separated by an average amplitude of 30 µV .

options were available:

• ‘Standard’ [4]: the alternans series was composed of am-

plitude values in points with the specified offset within ST-

T segment in every beat in the analysis window; two beat

averages were calculated - for even and odd valid beats

and any invalid beat was replaced with the respective av-

erage to compute the amplitude; the series was subject to

detrending via removal of best-fit linear trend before the

periodogram estimation (see below).

• ‘Differences’: the alternans series was the sequence of

the first differences of the series calculated in the ‘stan-

dard’ technique. In this way a natural detrending of the

data is performed and lower frequencies are suppressed.

2.3.3. Periodogram and alternans values

The alternans series was subject to periodogram estima-

tion via windowing with the Hamming window and taking

squared absolute value of FFT ([6]).The periodogram was

obtained for every offset in the ST-T segment and then av-

eraged over the whole of this segment.

The mean noise level was calculated as the mean value

of the squared absolute value of FFT on the interval 0.4-

0.46 cycles per beat. (Note that this measure susceptible

to intra- and inter-subject heart rate differences.) The al-

ternans voltage was the square root of the difference be-

tween value at the frequency of 0.5 and noise mean level.

The alternans ratio, Ar, was given as the squared alternans

voltage divided by noise standard deviation calculated on

squared absolute FFT. The alternans value was considered

significant if Ar > 3.

If the analysis failed on a data file or there was no sig-

nificant alternans, the record was assigned a value of 0,
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otherwise the record was assigned the value of the max-

imum TWA voltage among leads where significant alter-

nans were found.

2.4. Modified Moving Average

2.4.1. Initial beat selection

The alignment procedure described in section 2.3.1 was

performed for the first 50 beats in the file. The template

beat was selected as the initial beat for even beat averag-

ing. The first valid beat (i.e. with a correlations above the

thresholds given in section 2.3.1) having an index of dif-

ferent parity was selected as the initial beat for odd beat

averaging. The alignment procedure ensured the selection

of a normal beat with an acceptable noise level.

2.4.2. Beat averaging

Beat averages were separately calculated for Q-S and

ST-T segments. Each beat after the initial beat was sub-

ject to fiducial point adjustment described in section 2.3.1.

The adjustment versus current average of the correspond-

ing index parity on Q-S and ST-T segments was performed.

Whenever any of the two correlation levels obtained after

beat adjustment was lower than the given thresholds, the

beat was marked invalid. If the beat was valid the respec-

tive averages were updated using optimal fiducial points

for respective segments and a weighting procedure as fol-

lows. For every point on Q-S or ST-T segment the value

of the average was altered towards the value of the current

beat. The amount by which the average was altered was

equal to the difference between the average and the current

beat at this point unless this difference was smaller than 1

µV or larger than 32 µV . In the latter case, the TWA am-

plitude was set to 1 µV or 32 µV respectively. (See [4] for

more details.) If there were more than 10% of points on

ST-T segment where the difference exceeded 32 µV , the

current beat was marked invalid.

2.4.3. Alternans value

The alternans value was calculated every 15 seconds.

The number of invalid beats during these 15 seconds was

also noted. If more than 10% of beats were marked as in-

valid, the segment was considered invalid. Otherwise, the

alternans value was computed as the maximum absolute

difference between odd and even averages at the end of

the interval on ST-T segment in all valid leads. The alter-

nans values were then combined on 1 minute intervals (i.e.

four 15 second intervals) by taking a minimum value out of

the four intervals (with zero corresponding to no valid al-

ternans value). The maximum one-minute alternans value

across the whole file was reported as the alternans value

for the file.

3. Data and results

In order to evaluate our algorithms before submitting en-

tries to the challenge, we chose to use a artificial multi-lead

ECG model which can exhibit realistic TWA, described in

an accompanying paper [1]. Records with TWA ampli-

tudes of 2, 4, 6, 8, 10, 16, 22, 28, 34, 40 and 60 µV were

generated. For each TWA amplitude a ‘clean’ file, files

with added white noise (with standard deviation of 5, 10,

20, 30 and 40 µV ) and baseline wander (obtained from the

MIT-BIH Noise Stress Test Database [7]), were separately

generated. Since the TWA normalization issue is unclear

(see section 4) the results of all methods were scaled by the

ratio of 60 divided by the result obtained for the clean file

with TWA level of 60 µV .

All four methods identified TWA level on clean records

with accuracy better than 2 µV (maximum value of differ-

ence).

On files with white noise SM ‘standard’ and ‘differ-

ences’ determined TWA with accuracy better than 6 µV

and 5 µV respectively if TWA was greater than 0.35κ

(where κ is white noise standard deviation) and failed

otherwise. On records where SM was successful MMA

had accuracy better than 5 µV , however it failed to reject

records with lower TWA to noise ratio and overall accu-

racy was significantly worse. This suggests that TWA to

noise level ratio estimation might improve the implemen-

tation of MMA.

On files with real noise added all methods had an accu-

racy better than 7 µV with a general tendency of improving

as the TWA amplitude increased.

The real patient data for the challenge was selected by

the competition organizers from amongst the databases

available on PhysioNet [2], [8]. For the spectral methods

we obtained the following scores on the challenge data:

0.880 for the ‘standard’ option (see section 2.3.2), 0.881

for the ‘differences’ option (which ranked third in the com-

petition)and 0.400 for the MMA method. When SM was

used as a noise detector for MMA (i.e. records with SM

zero entries were assigned zero in MMA too) the MMA

score improved to 0.834.

4. Discussion

Although the method of the PCinCC allows for an in-

dependent voting scheme on the performance of any algo-

rithm, there might exist a global bias in the ‘voting’ algo-

rithms. Therefore a standard database of TWA data is still

required. To avoid this chicken-and-egg scenario we de-

veloped a model of TWA activity [1]. In future papers we

will evaluate the performance of TWA algorithms at vary-
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ing noise levels and determine the minimum noise floor for

TWA detection. It will be interesting to determine if the re-

ported ‘natural’ TWA activity of normal subjects of up to

10 µV [9] is a real phenomenon, or simply just noise.

The PCinCC provides evidence to support the idea

that different algorithmic TWA evaluation implementa-

tions give largely different results. Therefore results of a

clinical trial can only be safely compared to the results ob-

tained on the exactly same equipment, with similar noise

levels. Publication of the actual algorithm’s source code

will facilitate repeatability.

However, we should note that for now the described al-

gorithms lack important processes which must be applied

as pre-processing or post-processing steps:

• The analysis should only be performed within a certain

heart rate interval (to be predictive). There are different

reports on what this interval should be [4], but it can be

anywhere between 90 and 110 BPM [9].

• The periodogram used in the spectral method to compute

the alternans values can be normalized in several ways [6],

which influences the estimated value of TWA amplitude

and therefore interpretation and it is unclear which nor-

malization method should be used.

• There are different criteria for TWA value interpretation;

criteria for negative, positive and indeterminate results are

necessary.

• Criteria for TWA interpretation often include lead-

specific requirements.

• Since TWA manifests with a different magnitude on dif-

ferent leads it is likely that multi-lead data should be ro-

tated to resolve the axis of maximum TWA activity [3].

5. Conclusions

This article details an open source suite of Matlab al-

gorithms that provides implementations of known stan-

dard TWA quantification techniques to provide a bench-

mark against which other TWA algorithms can be mea-

sured. The software suite can run on labelled or unlabelled

ECGs in both batch mode and with a provided graphical

user interface to aid waveform exploration. The accuracies

of the algorithms have been evaluated on both artificial and

real ECG data.

The algorithms have been released under the GNU Pub-

lic License (GPL) in the hope that others will improve

and build upon these routines. In particular, we hope that

inventors, manufacturers and other researchers will no-

tice misinterpretations of the commercially available algo-

rithms we attempted to mimic and suggest/make modifica-

tions for/to our code.
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