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Abstract

Evaluation of arterial baroreflex in cardiovascular con-

trol is an important topic in cardiology and clinical

medicine. In this paper, we present a point process ap-

proach to estimate the dynamic baroreflex gain in a closed-

loop model of the cardiovascular system. Specifically, the

inverse Gaussian probability distribution is used to model

the heartbeat interval, whereas the instantaneous mean is

modulated by a bivariate autoregressive model that con-

tains the previous R-R intervals and systolic blood pressure

(SBP) measures. The instantaneous baroreflex gain is esti-

mated in the feedback loop with a point process filter, while

the RR→SBP feedforward frequency response gain can be

estimated by a Kalman filter. The proposed estimation ap-

proach provides a quantitative assessment of interacting

heartbeat dynamics and hemodynamics. We validate our

approach with real physiological signals and evaluate the

proposed model with established goodness-of-fit tests.

1. Introduction

Sudden changes in arterial blood pressure (ABP) induce

a baroreceptor-cardiac reflex (baroreflex) that evokes an

inverse change in heart rate (HR). Hence, a measure of

baroreflex gain is essential in characterizing cardiovascular

control and explaining both heartbeat dynamics and hemo-

dynamics [1, 2]. Since the cardiovascular system has a

closed-loop interactions between many variables including

R-R interval and ABP, research efforts have been devoted

to estimating the baroreflex gain with a closed-loop sys-

tem identification approach, which yields a more accurate

assessment compared to open-loop approaches [3].

In our previous work [4-8], we have successfully applied

probabilistic point process models for estimating instan-

taneous measures of HR, HR variability (HRV), as well

as respiratory sinus arrhythmia (RSA). The point process

framework enabled us to estimate these physiological in-

dices in a dynamic fashion with a fine timescale. This pa-

per expands on the point process approach to model the

heartbeat interval, allowing for a dynamical assessment of

the baroreflex gain in the feedback loop. In the meanwhile,

we also model the feedforward cardiovascular loop and

use a Kalman filter to track the parameters for estimating

the RR→SBP frequency response. We demonstrate our

proposed method with some physiological recordings and

present some discussions in cardiovascular control.

2. Heartbeat interval point process model

Given a set of R-wave events {uj}
J
j=1 detected from the

electrocardiogram (ECG), let RRj = uj − uj−1 > 0 de-

note the jth R-R interval. By treating the R-waves as dis-

crete events, we may develop a probabilistic point process

model in the continuous-time domain. Assuming history

dependence, the waiting time t − ut (as a continuous ran-

dom variable) until the next R-wave event can be modeled

by an inverse Gaussian model [4]:

p(t) =
( θ

2πt3

)
1
2

exp
(

−
θ(t − ut − µt)

2

2µ2
t (t − ut)

)

(t > ut),

where ut denotes the previous R-wave event occurred be-

fore time t, θ > 0 denotes the shape parameter, and

µt ≡ µRR(t) denotes the instantaneous R-R mean that can

be modeled by a time-varying linear predictive model:

µt = a0(t) +

p
∑

i=1

ai(t)RRt−i +

p
∑

j=1

bj(t)SBPt−j (1)

where the first two terms represent a linear autoregressive

(AR) model of the past R-R intervals, and SBPt−j denotes

the previous jth SBP value prior to time t.

2.1. Instantaneous indices of HR and HRV

Heart rate is defined as the reciprocal of the R-R in-

tervals. For RR measured in seconds, r = c(t − ut)
−1

(where c = 60 s/min) is a physiological measurement in

beats per minute (bpm). By the change-of-variables for-

mula, the HR probability p(r) = p(c(t − ut)
−1) is given

by p(r) =
∣

∣

dt
dr

∣

∣p(t), and the mean and the standard devia-

tion of heart rate r can be derived [4, 5]:

µHR = µ̃−1 + θ̃−1, σHR =

√

(2µ̃ + θ̃)/µ̃θ̃2, (2)
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where µ̃ = c−1µRR and θ̃ = c−1θ. Essentially, the instan-

taneous indices of HR and HRV are characterized by the

mean µHR and standard deviation σHR, respectively.

It is known from the point process theory that the con-

ditional intensity function (CIF) λ(t) is related to the inter-

event probability p(t) by a one-to-one transformation [9]:

λ(t) = p(t)

1−
R t

ut
p(τ)dτ

. The estimated CIF can be used to

evaluate the goodness-of-fit of the probabilistic model for

the heartbeat dynamics. In addition, the quantity λ(t)∆
yields approximately the probability of observing a beat

during the [t, t + ∆) interval.

2.2. Adaptive point process filtering

Let ξ = [{ai}
p
i=0, {bj}

p
j=1, θ]

T denote the vector

that contains all unknown parameters in the probabilistic

model, we can recursively estimate them via adaptive point

process filtering [5]:

ξk|k−1 = ξk−1|k−1

Pk|k−1 = Pk−1|k−1 + W

ξk|k = ξk|k−1 + Pk|k−1(∇ log λk)[nk − λk∆]

Pk|k =
[

P−1
k|k−1 + ∇λk∇λT

k

∆

λk

−∇2 log λk[nk − λk∆]
]−1

where P and W denote the parameter and noise covariance

matrices, respectively; ∆=5 ms denotes the time bin size;

∇λk = ∂λk

∂ξk
and ∇2λk = ∂2λk

∂ξk∂ξT
k

denotes the first- and

second-order partial derivatives of the CIF w.r.t. ξ at time

t = k∆, respectively. The indicator variable nk = 1 if a

heart beat occurs in time ((k − 1)∆, k∆] and 0 otherwise.

2.3. Closed-loop cardiovascular control

Baroreflex gain (SBP→RR loop). First, we aim to

model and assess the SBP→RR feedback loop, which is

directly related to heart rate baroreflex. Among many

methods, baroreflex gain has been estimated based on the

coherence between heart rate and blood pressure [10]; al-

ternatively, it has been estimated by a closed-loop bivariate

AR model [3]. However, all of these approaches are batch-

based with the assumption that the signals are stationary

or locally stationary (within a moving window). Conse-

quently, these approaches cannot fully capture the dynamic

(non-stationary) nature of the physiological signals due to

the drastic cardiovascular control compensatory changes.

In contrast, our point process approach offers a way to es-

timate the instantaneous barorefex gain and to assess the

heartbeat dynamics with a fine timescale.

Specifically, in light of (1) we can compute the fre-

quency response for the baroreflex (SBP→RR loop)

H12(f) =

∑q
j=1 bj(k)z−j

∣

∣

z=ej2πf2

1 −
∑p

i=1 ai(k)z−i
∣

∣

z=ej2πf1

, (3)

where f1 and f2 denote the rate for the R-R and SBP-SBP

intervals, respectively; here we assume f1 ≈ f2 ≡ f .

With the estimated time-varying AR coefficients {ai(k)}
and {bj(k)} at time t = k∆, we may evaluate the dy-

namic baroreflex gain (amplitude) and autospectrum in the

frequency domain at different ranges (VLF, 0.01-0.05 Hz;

LF, 0.05-0.15 Hz; HF, 0.15-0.5 Hz). The baroreflex gain,

characterized by |H12(f)|, represents the effect of SBP on

heart beat, mediated by the neural autonomic reflex.

Modeling RR→SBP feedforward loop. Simultaneous

to baroreflex assessment, we aim to model the RR→SBP

feedforward loop, which enables us to study quantitatively

the hemodynamics and to evaluate the impact of heartbeat

on the arterial blood pressure. Similarly, SBP is modeled

by a bivariate AR model:

SBPk = c0 +

p
∑

i=1

ci(k)SBPk−i +

p
∑

i=1

di(k)µRR(k − i),

where µRR(k−i) represents the estimated instantaneous R-

R mean value at the time when SBP-events occur. The co-

efficients {ci}
p
i=0 and {di}

p
i=1 will be dynamically tracked

by a Kalman filter [11]. Unlike the point process filter,

the update occurs only at the time of SBP-events. Simi-

larly, we can also estimate the frequency response of the

RR→SBP cardiovascular loop:

H21(f) =

∑p
i=1 di(k)z−i

∣

∣

z=ej2πf

1 −
∑p

i=1 ci(k)z−i
∣

∣

z=ej2πf

, (4)

where f denotes the sampling rate (beat/sample) for SBP-

SBP intervals. Likewise, we can estimate the dynamic gain

and phase of H21(f) at each single SBP-event.

2.4. Goodness-of-fit tests

The goodness-of-fit of the probabilistic model is based

on the Kolmogorov-Smirnov (KS) test [9]. Given a point

process specified by J discrete events: 0 < u1 < · · · <
uJ < T , compute zj =

∫ uj

uj−1
λ(τ)dτ . If the model is

correct, then the variables vj = 1 − exp(−zj) are inde-

pendent, uniformly distributed within the range [0, 1], and

gj = Φ−1(vj) (where Φ(·) denotes the cumulative den-

sity function (cdf) of the standard Gaussian distribution)

are independent standard Gaussian random variables. To

compute the KS test, the vjs are sorted from the small-

est to largest value, and plotted against the cdf of the uni-

form density defined as j−0.5
J

. Ideally, the points should

lie on the 45◦ line, and the 95% confidence interval lines

are y = x ± 1.36
(J−1)1/2 . The KS distance, defined as the

maximum distance between the KS plot and the 45◦ line,

is used to measure the lack-of-fit between the model and

the data. We also compute the autocorrelation function of
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Figure 1. 1st column: A snapshot of ECG and ABP signals (systolic and diastolic pressures are measured at the time of ventricular contraction

and relaxation, respectively). 2nd column: 20-min recordings of R-R and SBP time series. 3rd column: Parametric AR(8) autospectra. 4th column:

Coherence magnitude and phase.
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Figure 2. From top to bottom: instantaneous estimates of µRR (su-

perimposed by red trace of R-R time series), σRR, µHR and σHR statistics

(MGH/MF database subject 007).

gjs: ACF(m) = 1
J−m

∑J−m
j=1 gjgj+m. If the gjs are inde-

pendent, ACF(m) shall be small (around 0 and within the

95% confidence interval 1.96
(J−1)1/2 ) for all values of m.

3. Experimental results

The first heartbeat data set, which was retrieved from

Phyisonet (http://www.physionet.org/) [12], consists of

multi-parameters including ECG traces, arterial pres-

sure recorded from patients in critical care units (from

MGH/MF Waveform Database). Due to space limit, we

randomly selected segments of recordings from one sub-

ject who had artifact-free calibrated R-R series and arterial

pressure measurements. Figure 1 illustrates the signals as

well as their power spectra and coherence (magnitude and

phase). As seen from the figure, the R-R and SBP signals

appear more coherent in the VLF and LF ranges.

The initial parameters are estimated from the first 2-min

recordings of the R-R and SBP beat series. Parameters

{ai}
p
i=0, {bi}

p
i=1 and {ci}

p
i=0, {di}

p
i=1 are estimated by a

bivariate AR model assuming a closed-loop system [3],

whereas the shape parameter is estimated by θ = µ3/σ2

from the R-R series. Order selection of the bivariate AR

was selected based on the Akaike information criterion

(AIC). Order p = 8 was used in the current experiment.

For the selected subject, we estimate the instantaneous
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Figure 3. Top two panels: Image visualization of dynamic baroreflex

gain and phase (within 0.01-0.5 Hz). Bottom two panels: tracking the

mean baroreflex gain (red) and the mean gain of RR→SBP frequency

response (blue).

HR and HRV statistics (Fig. 2), the dynamic baroreflex

gain and phase, as well as the mean gains of the frequency

responses in both feedback and feedforward loops (Fig. 3).

To evaluate the model fit, we examine the resultant KS plot

and autocorrelation plot (Fig. 4). The fact that the curves

fall almost within the 95% confidence bounds indicates a

good fit of the model to the heartbeat events. As a compar-

ison, we also conducted an experiment that does not con-

sider SBP in the point process model and repeated the KS

test. The KS distance was found to be 0.092. Therefore,

the inclusion of SBP as covariate helps improve the model

fit for the data. This result is not surprising considering

that in the closed-loop cardiovasular system, heartbeat and

blood pressure/volume are directly (or indirectly through

other factors) influenced by each other. In addition, the

correlation coefficients between the mean baroreflex gain

(LF) and µRR(t) and µHR(t) are 0.837 and −0.843, respec-

tively, suggesting that in this case fast dynamic changes of

the baroreflex gain reflect reverse changes in HR.

Next, we analyzed a previously studied heartbeat data

set (details of the “tilt-table” protocol were given in [4]).

For demonstration purpose, in Fig. 5 we plot eight epochs

of R-R and SBP recordings when a subject underwent a

few cycles of “rest” and “tilt” posture conditions. The in-

stantaneous HR, HRV, and baroreflex gain indices are es-

timated from the complete time courses (Fig. 5) and then
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Figure 5. Dynamic tracking of the baroreflex gain in a rest-tilt study.

divided into two groups (rest vs. tilt) for statistical compar-

ison. Furthermore, a rank-sum test was applied to evaluate

the null hypothesis that the medians of the rest and tilt con-

ditions are equal. The null hypothesis is tested with 95%

confidence (P < 0.05). As a comparison, the open-loop

baroreflex gain (denoted as |Hopen
12 (f)|) was also com-

puted for each epoch with a standard batch spectral esti-

mation method [10]. As seen in Table 1, the open-loop

method tends to overestimate the baroreflex gain (in both

LF and HF). Similar results were also found in other sub-

jects (not shown here).

4. Conclusion

We propose a point process framework to capture the

transient dynamics of HR and HRV, and to model the dy-

namic nature of the baroreflex frequency response in a

non-stationary environment. Our results confirm that the

closed-loop identification approach is a more appropriate

framework for modeling cardiovascular control dynamics,

and that the open-loop approach leads to overestimation of

the baroreflex gain. In addition, the instantaneous estima-

tion of baroreflex frequency response produces a dynamic

assessment at a fine timescale. Currently, our model is re-

stricted in using only the SBP events. A possible inclusion

of the diastolic events, or even the continuous ABP traces,

Table 1. Comparison of statistical indices between the rest and tilt

conditions (in one subject). The baroreflex gains (ms/mmHg) listed here

are computed within the LF range.

RR (ms) SBP (mmHg) HRV (bpm) |H12(f)| |H
open
12 (f)|

rest 965±47 108.9±4.7 2.70±0.87 4.91±0.12 12.8±1.5

tilt 773±36 105.2±6.4 1.96±0.56 4.37±0.19 5.9±0.9

P -value <1e-8 <1e-8 <1e-8 <1e-8 0.02

will be the subject of our future investigation. Consider-

ation of continuous-time ABP as covariate could reveal a

more accurate description of the complex dependency be-

tween heartbeat dynamics and hemodynamics.

To conclude, statistical modeling of the feedforward

and feedback loops in cardiovascular control could shed

important insights into a large majority of cardiovascular

diseases and disorders (e.g., hypertension and congestive

heart failure) related to systemic hemodynamic dysfunc-

tion. Furthermore, the instantaneous point process indices

of HR, HRV, and baroreflex gain can provide a potential

real-time noninvasive assessment for ambulatory monitor-

ing in clinical practice.
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