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Abstract 

Here we successfully extracted sources from noisy 

single-channel abdominal phonograms. First, an 

appropriate matrix of delays was constructed; then 

multiple independent components were calculated using 

TDSEP; finally, components were projected back onto 

the measurement space and grouped using K-means. 

Three single-channel phonograms from different subjects 

were analysed. Results showed a better-quality and more 

objective extraction of Foetal Heart Sounds (S1-S2), 

maternal activity and line-noise by using this temporal 

independent approach (versus a FastICA version). 

Future work will look for extracting more sources and a 

robust method to measure the quality of the extraction. 
 

1. Introduction 

Long-term monitoring for foetal examination during 

pregnancy is an important part of foetal and maternal care 

[1]. Currently, monitoring of foetal well-being heavily 

relies on ultrasound imaging, an unsuitable method for 

long-term surveillance and foetal distress prediction [2]. 

Instead, a sensitive transducer positioned on the maternal 

abdomen records the abdominal phonogram, a signal that 

is rich in information about heart sounds (FHS), heart 

rate, breathing/body movements [2,3]. Together, these are 

considered to provide an assessment of foetal health [2]. 

Nevertheless, the phonogram is a low acoustic energy 

that is easily overlapped by environmental, maternal and 

“shear” sources [4], which turns the extraction of foetal 

information into a difficult and challenging task. 

At present, different methods for foetal monitoring, 

based on FHS (PCG) or Foetal Breathing Movements 

(FBM), have been proposed [2-7]. Regrettably, there is 

no such foetal device yet available. The main problem, 

from our point of view, is that as these methods are 

focused on extracting pre-selected information (either 

FHS or FBM); they generally rely on rigid empirical 

criteria that: do not properly manage major changes in the 

SNR and irreversibly discard some extra and valuable 

information, i.e. maternal sources [8]. A few studies have 

shown some enhancement in the SNR [4-7], but the 

detection of FHS and FBM may still be difficult, and it 

looks like the solution requires a different signal 

processing perspective. In a previous work [8], we took 

advantage of the abundance of information in the 

phonogram, and used Single-channel Independent 

Component Analysis (SCICA) [9] to decompose it in two 

sources. This work, looking for FHS and residual noise, 

showed a successful extraction of S1-S2. However, three 

issues were evident: (1) for the FHS, the method did not 

always reach a complete separation (spectrum with more 

than one peak), (2) for the residual noise, further analysis 

was necessary to extract other physiological components 

and, (3) the components used to compose both the FHS 

and noise sources were manually selected.  

The goal of this work was to reach a better-quality and 

less subjective extraction of sources from the phonogram 

by implementing three changes in [8]: (1) instead of 

FastICA to perform the decomposition [10], using 

Temporal Decorrelation source SEParation (TDSEP) 

[11], (2) instead of a two sources decomposition, looking 

for more sources by increasing the number of 

components to be extracted from two to ten and, (3) 

instead of a manual and highly subjective method, using 

K-means to find and group components corresponding to 

the same sources such as FHS, maternal or line-noise.  

2. Methods 

Three single-channel abdominal phonograms, between 

3 and 5 minutes of length, were used. The signals were 

obtained from pregnant women with foetal gestation ages 

between 36 and 40 weeks using a PCG piezoelectric 

transducer connected to a general purpose amplifier. 

Additionally, the abdominal ECG (aECG) was recorded 

at 500 Hz. The signals were processed in three steps [8]. 

First, the single-channel signal was projected into a 

higher dimension using the Method of Delays (MD) [12]. 
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Then, multiple independent components (ICs) were 

calculated using TDSEP [11]. Finally, to recover the 

sources, these components were projected back onto the 

measurement space and classified using K-means.  

2.1. Preparing a multidimensional dataset 

This part fulfilled one of the two primary conditions to 

apply ICA [10]: the number of observations available is 

at least as large as the number of sources we wish to 

extract. To overcome this condition, as we are working 

with a single scalar time series, x(t), we used the MD [12] 

to map this single-channel signal into a higher 

dimensional space. This can be done by constructing an 

m-dimensional matrix of delays, v, using a series of delay 

vectors taken from the data x(t) as:  

( ) ( ) ( ){ } mmtxtxtx ℜ∈−−−−= τττ 1(,...,2,v , (1) 

where τ is the lag-time and m, given by the size of the 

delay vector, is the embedding dimension. 

Due to Takens [13], it is known that v allows us to 

reconstruct the unknown dynamical system that generated 

x(t). In particular, for real world data, m needs to be “big 

enough” to capture the information content necessary [8]. 

Then, once the optimal value for m is found, v is 

constructed using N consecutive delayed vectors. This 

value is determined by the length of the signal to be 

analysed (NT) as: 

N = NT – (m – 1),    (2) 

If x(t) were sampled using an appropriate sampling 

frequency (fs), then the practical minimum size for m can 

be chosen using the lowest frequency of the periodic 

components we are looking for (fl) [14], and the lag-time 

(τ) can be set to one [8]. This is shown as: 

m ≥ fs / fl,     (3) 

Knowing that our signals do not contain FBM, and 

that the lowest frequency for FHS is 20 Hz [3], we chose 

fl = 10 Hz, which gave m= 50 [8]. Next, to select N, we 

searched for a matrix of delays that covered a quasi-

stationary signal and we found that NT = 5000 samples 

(10s) was good enough to accomplish this requirement 

[8]. Finally, if τ, m and N are adequate, then v is rich in 

information about the temporal structure of the measured 

data, and we are ready to represent the data in v by a 

convenient spanning basis such as ICA [10,11]. 

2.2. Extraction of ICs 

At present, different algorithms for performing ICA 

have been developed, one of them, TDSEP, is suitable for 

data with a rich temporal structure [11]. The basis of this 

computationally simple and efficient algorithm is a set of 

time-lagged correlation matrices of a time series x(t) as: 

( ) ( ){ }ττ += txtxR x E ,    (4) 

where E means expectation and τ (= 1,2,3,…,k) is a 

certain time-lag. For independent components these 

matrices have to be diagonal. Therefore, to estimate the 

ICs and the mixing matrix (A), TDSEP performs a joint 

diagonalisation of the time-lagged correlation matrices. 

Here the value of k is important because it defines the 

number of time-lags and the quality of the separation. 

Hence, and in absence of a theoretically choice of k, we 

tested several values and found that k= 2 extracted ICs 

with a well defined single-peak spectrum. 

Before ICA was applied, we made assumptions about 

our data as: (i) the phonogram is a linear summation of 

vibrations from the foetal heart, maternal and external 

sources; (ii) the phonogram components have disjoint 

spectral support [9], and (iii) the sources have non-

Gaussian distributions and are statistically independent. 

2.3. Recovering independent sources 

As mentioned in [9], if we break up a scalar time 

series to construct v and we apply ICA, then we may 

obtain multiple components associated with a single 

independent source. Indeed, the nature of the mixing 

matrix means that many more sources will be identified 

over the expected number of sources underlying a 

measurement set. This implies that some post-processing 

is necessary to group ICs together, which is not a trivial 

task. Here, step 2.2 produced 50 ICs that were projected 

back onto the measurement space using: 

T

ii

i
saY  = ,     (5) 

where si is the ith IC (i= 1,…,50), ai is the corresponding 

column of A [9], and Y
i is a matrix of delays for that 

component. Next, this matrix was transformed into the ith 

projected IC using the diagonal averaging method [14]: 

∑
=

−+=
50

1

)1(,

i

50

1
IC

k

i

ktkY ,    (6) 

Once the whole ICs have been projected, and knowing 

that some of them correspond to the same subspace (i.e. 

FHS, maternal or line-noise), they must be grouped and 

used to compose the related independent sources. More 

specific, as ICA “learns” a zero phase filter bank 

(expressed in each column of A), it means that every IC 

corresponds to a filtered sequence of independent signals 

that can be grouped using their spectral similarity [9]. 

Thus, we used the Power Spectral Density (PSD) as the 

attribute for K-Means to identify and cluster ICs into 10 

disjoint and independent subspaces (IS
j) [9]. Then, to 

recover the independent sources (isj), we added the ICs 

grouped in each IS
j and used both time and frequency 

information to manually identify them as FHS, maternal 

950



 

 

activity or line-noise sources. Finally, to compare results 

between this TDSEP version and the FastICA one in [8], 

we estimated the degree of linear dependence between all 

pair wise sources extracted by each method using the 

correlation coefficient. 

3. Results 

Figure 1 depicts a 10s segment of noisy abdominal 

phonogram and three of ten is (a, b, and c) extracted 

using the TDSEP method described in this work and the 

FastICA one described in [8]. The sources were clearly 

identified as: (a). FHS (S1-S2), (b). maternal activity 

(pulse wave peaks superimposed on a slow-respiratory 

component), and (c) line-noise. In the bottom, and only as 

a visual time reference, the abdominal ECG is shown. In 

addition, on the right hand side of the phonogram and 

these sources, we show the corresponding PSDs.  

In the time domain, for the physiological sources (a) 

and (b), it is difficult to visually distinguish differences 

between sources extracted by TDSEP and FastICA 

options, except that the amplitude in the FHS by TDSEP 

is a bit larger than that in the FHS by FastICA. In (c), it is 

clear that the line-noise amplitude by TDSEP is larger 

than that by FastICA. In the frequency domain, there is a 

notorious difference between sources extracted by both 

methods, the number of peaks in the PSD. For signals 

extracted by TDSEP, the PSDs always showed a single 

and well defined peak, whilst for FastICA the PSDs 

usually showed more than one. 

Figure 2 illustrates the dependency matrix used to 

calculate the degree of linear dependence between all pair 

wise sources extracted using methods based on: (a) 

FastICA [8] and (b) TDSEP. Notice that although ten 

sources have been extracted, only three of them, 

identified without any doubt, have been described in this 

work. In general, we observe that colors/grays are usually 

spread all over the matrix in (a) and only on the diagonal 

in (b). In particular, in (a): maternal sources s1 and s2 

show a large lineal dependence between them as well as 

with s8 and s9. The FHS in s3 shows linear dependence 

with s4 and s8, and line-noise in s7 shows lineal 

dependence with s4 and s5. On the contrary, in (b), all 

sources a very small dependence among them. 

4. Discussion and conclusions 

Here we have used a SCICA method to successfully 

extract FHS, maternal activity and line-noise from noisy 

abdominal phonograms. This method, modified from a 

FastICA-subjective version in [8] to a TDSEP-

unsupervised one, has shown better results. As we have 

seen, considering the temporal structure of the signal by 

using TDSEP improved the separation and extracted 

sources that: show PSDs with a single and well defined 

peak, and are less dependent among them. Besides, the 

inclusion of K-means gave the method the possibility not 

only to objectively classify components, but also to 

increase the number of sources to be extracted and 

analysed. Hence, by increasing this number from two to 

ten, the method managed the extraction of the main heart 

sounds (S1-S2), maternal respiration along with maternal 

pulse wave, and line-noise. This isolation of foetal and 

maternal activities is significant because they may 

overlap each other like the foetal and maternal QRSs do 

in the aECG. The most outstanding factor is that this 

separation was achieved using a single-channel temporal 

approach. This approach clearly extracts physiological 

sources from the abdominal phonogram, and we believe 

it will be useful for surveillance about foetal and maternal 

condition. Future work will look for identifying more 

sources and a robust method to measure their dependence. 
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Figure 1. A segment of noisy abdominal phonogram and three independent sources extracted using methods based on 

FastICA and TDSEP. From top to bottom: the recorded abdominal phonogram (normalised), its sources: (a). FHS, b). 

maternal activity, and c). line-noise), and the abdominal ECG (used only as a visual reference). The corresponding power 

spectrum of the abdominal phonogram and its independent sources is shown on the right hand side. 
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Figure 2. Dependency matrix used to express the degree of linear dependence between all pair wise sources extracted by: 

a). the method based on FastICA and b). the method based on TDSEP. 
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