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Abstract

This paper focuses on the challenge of automatical de-

tecting an emergency, e.g., a fall by an elderly person, and

to generate an alert such as a phone call or sending a SMS

to a relative as fast as possible. The presented system only

needs one single triaxial accelerometer. The algorithmic

part uses the paradigm of knowledge-based methods. Un-

like pattern recognition algorithm [1], knowledge-based

methods strictly separate between the so-called knowledge

base declaratively describing the knowledge about the spe-

cific domain and the so-called inference component or in-

ference engine that tries to derive answers from the under-

lying knowledge base. That is to say the knowledge base

can be replaced without changing the concrete inference

machine. The main part of the developed algorithm to de-

tect falls is based on a fuzzy logic inference system and a

neural network [2]. In addition, the current velocity and

relative position of the person wearing the sensor are de-

termined from acceleration data. These information can

be used as further features to improve both sensitivity and

specificity. The described methods were integrated into the

telemedical system described in [3, 4].

1. Introduction

Due to demographic changes, life expectancy among the

population, especially in industrialized countries, has in-

creased over the past decades, and this trend will continue

this way in the future. As a consequence the number of

elderly people is also increasing.

The preparation of elderly people to live longer at the place

they like most, while ensuring a high quality of life, auto-

nomy and security as well as simultaneously reducing the

expenditures on in-patient care will be tremendous impor-

tant tasks in the very near future. This also includes as-

sistance to carry out daily activities enhancing safety and

security as well as getting access to social, medical and

emergency systems. Receiving social and medical support

in various innovative ways contribute to independent liv-

ing and quality of life for many elderly and disabled peo-

ple. All this is summarized in the field of Ambient As-

sisted Living (AAL). Being able to monitor a patient, vital

signs can be gathered which consequently can help to su-

pervise clinical data, such as health status, falling risk and,

of course, the efficiency of rehabilitation.

There exist a variety of monitoring techniques to assess

the movement of a subject. Some of these include obser-

vation, physical science techniques, diaries and question-

naires. On the contrary, there are accelerometers, which

have been established in industrial applications for decades

and which are establishing in medical applications now.

Those sensors have significant advantages, e.g., micro-

electro-mechanical system (MEMS) accelerometers can

monitor the movement of the subject while simultaneously

not interrupting his or her daily routines. Furthermore,

they are more functional, lighter, more reliable than, e.g.,

optical tracking systems, and they are produced for a frac-

tion of the costs of the conventional macroscale accelerom-

eter elements.

In this study, the triaxial accelerometer MMA7260Q by

Freescale Semiconductor extended by a bluetooth module

and attached near the waist is used to capture movements

and to detect falls (Fig. 1). The sensitivity of the sensor

is ±1.5 g, with a noise level of 4.7 mVrms and a sampling

rate of 512 Hz with 12-bit resolution.

2. Methods

2.1. Calibration using rotation

Calibration of the sensor axes with respect to the world

coordinate system was conducted to be independent of the

orientation of the sensor fixed at the body of the subject.

This independency is mandatory for user acceptance as

well as for the computation of velocity and position. The

calibration respectively the rotation was realized while the

sensor was static and only the gravitation component acted
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Figure 1. Acceleration sensor unit with bluetooth module

on the accelerometer. In order to compute the rotation

standard image processing methods, e.g., a simple basis

transformation, quaternions to represent rotations with lin-

ear equations combined with a least squares method or Ro-

drigues’ rotation formula, can be applied [5, 6]. After de-

termining the rotation matrix R, all the acceleration data

are rotated by R before the actual algorithm is executed.

2.2. Removing peaks

Working with data of physically measured signals, we

always have to deal with unwanted artifacts, like noise and

peaks. Peaks occur, e.g., when the sensor is bouncing

against other objects or when there is an occasional bad

bluetooth connection. It is quite obvious that peaks will

have a distorting effect on, e.g., the computation of veloc-

ity and displacement. Positive peaks can be easily removed

by applying the morphological filtering operation called

opening (combination of erosion and dilatation) and, on

the other hand, negative peaks are disabled by applying

the operation closing (dilatation followed by erosion) [1].

In this study, an emperically determined window size of

n = 3 samples leads to the best results.

2.3. Reducing noise

Mathie [7] states that noise should be reduced by care-

ful design and choice of the sensor module. But usually

the system is limited to a specific sensor and hardware pa-

rameters cannot be changed. As a consequence, the accel-

eration data have to be smoothed in order to minimize the

impact of noise to the algorithm. Using a simple one-sided

moving average filter with an empirically determined win-

dow size of n = 5 samples lead to adequate results with

the sensor module used in this work. Figure 2 shows an

illustrative example.

As a consequence, the peak-to-peak noise level of the

accelerometer could be reduced from 16 mg to 4 mg.
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Figure 2. Moving average filter with 5 samples window

size applied to acceleration signal

2.4. Signal separation

Due to the natural movement of the subject, e.g., bend-

ing forward or running, the sensor axes also change their

orientation. This leads to incorrect results for the compu-

tation of velocity and displacement. In order to compen-

sate this change in orientation the total acceleration was

divided into gravitational and body acceleration compo-

nents. Therefor a sixth-order elliptic IIR filter with a cut-

off frequency fcut of 0.25 Hz, pass band ripples Ap with

0.01 dB and a stopband magnitude Ast of −80 dB was

chosen [7]. Using the result of the low-pass filter, the grav-

itational offset, a rotation update (Ch. 2.1) could be per-

formed, e.g., every 20 ms.

2.5. Signal transformation

After pre-processing the acceleration data as described

in the previous sections, the acceleration data is trans-

formed from Cartesian coordinates (x, y, z)T to spherical

coordinates (r, φ, θ)T (Eq. 1-3).

r =
√

x2 + y2 + z2 (1)

φ = atan2(y, x) (2)

θ =
π

2
− arctan

z
√

x2 + y2
(3)

The first coordinate r (magnitude) represents the inten-

sity of the acceleration. The angles φ and θ both describe

the orientation of the current acceleration. After transform-

ing the signal, an approximation respectively an estimation

of the signal magnitude area (SMA) (Eq. 4)) is calculated

by filtering the magnitude r with a moving average filter

(w = 0.8s).

SMA =
1

N

(

N−1
∑

n=0

(|xn| + |yn| + |zn|)

)

(4)

The angles φ and θ are transformed again by computing

the forward differences (Eq. 5).
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Table 1. Fuzzy rules of the fuzzy inference system (FIS)

IF THEN

SMA = ok & ∆φ = rest & ∆θ = rest Mov. = rest

SMA = high & ∆φ = high Mov. = heavy

SMA = high & θφ = high Mov. = heavy

∆φn = φn+1 − φn ∆θn = θn+1 − θn (5)

The resulting difference vectors are smoothed by a mov-

ing average filter (w = 1s). In order to optimize the perfor-

mance of the complete algorithm, the last step of the signal

transformation chain down-samples the data from 512 Hz
to 128 Hz.

The extracted features described above contain sufficient

information to build a reliable fall detection system.

2.6. Fuzzy inference system

The fuzzy logic is widely used in the field of artificial

intelligence and belongs to the knowledge-based methods.

It represents a generalization of the classic boolean logic.

In contrast to boolean logic, logical variables can take on

continuous values between 0 and 1. A fuzzy inference sys-

tem (FIS) describes the mapping from a given input to an

output using fuzzy logic. They have the benefit that the so-

lution to a specific problem can be cast in terms that human

operators can easily understand. The opposite way around,

expert knowledge can be described quickly through the

fuzzy sets, especially for tasks that are already success-

fully performed by humans. Table 1 shows the fuzzy rules

of the FIS developed in this study. Mamdani implication is

used as fuzzy inference method (Eq. 6). The intervalls of

the fuzzy rules were emperically choosen and are encoded

as input member ship functions [8].

µA→B(x, y) := min{µA(x), µB(x)} (6)

2.7. Neuro-fuzzy hybridization

The combination of the human-like reasoning style of

a FIS with the learning and connectionist structure of ar-

tificial neural networks (ANN) is called neuro-fuzzy. The

synergistic effect using the characteristic properties of both

techniques is quite powerful. On the one hand, we can for-

mulate human knowledge with simple IF-THEN rules and,

on the other hand, ANN are universal approximators with

generalization ability.

In this work a multilayer perceptron (MLP) with an input

layer consisting of 640 = 5 · 128 Hz neurons (the width of

5sec for each time window was empirically determined),

Table 2. Results of sensitivity and specificity performing

different fall scenarios

Fall scenario Sensitivity Specificity

Collapse 88% 99.76%

Forward 96% 99.64%

Backward 96% 99.40%

Sideward 96% 99.80%

2 hidden layers with 30 respectively 20 neurons, and an

output layer with 1 neuron. The training of the MLP was

performed using the error-back-propagation algorithm [1].

2.8. Thresholding

In order to classify the output of the ANN as a fall, it

was defined that the emperically determined threshold of

0.45 has to be exceeded directly two times one after the

other.

2.9. Velocity and displacement

Although both velocity and displacement information

can mathematically derived from acceleration data by sim-

ple integration (Eq. 7), this task is not trivial dealing with

real data.

s(t) =

∫

v(t) dt =

∫∫

a(t) d2t (7)

Mathie [7] states that only the body component should

be included for double-integration to give a true displace-

ment signal. Due to poor results extracting the body com-

ponent in this study, the test conditions were modified. The

acceleration sensor unit was moved in a way that there

was no alteration in orientation possible during movement,

e.g., on a carriage of a demonstration track (movement in

xy-plane) or lying on the floor of an elevator (movement

in z-axis). This limitation provides satisfying results for

the derivation of velocity and displacement, at least over a

short time period (Ch. 3).

3. Results

In order to benchmark the developed procedures, five

test persons simulated the fall scenarios listed in table 2

five times. Heavy falls result in a reliable detection rate.

Nevertheless, the subjects tried not to fall too heavy. The

achieved results without considering the features velocity

and displacement are shown in table 2.

Several different test scenarios were generated and pro-

cessed in order to evaluate the results of the computation
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of velocity and displacement from acceleration data as de-

scribed in section 2.9. The first experimental set-up was

restricted to acceleration affecting only the z−axis. A test

scenario using an elevator was performed seven times with

a distance of 3.5 m each time. Table 3 shows the results.

Table 3. Results of movement in vertical direction: vz

is the absolute error of velocity in vertical direction com-

pared to 0 m/s, the traveled distance dz and the relative

difference δdz to the real value of 3.5 m.

vz[m/s] dz[m] δdz[%]

µ 0.003 3.22 8.0

σ 0.067 0.35 10.0

The second test defined no restrictions. The subject per-

formed squats with the sensor unit fixed on the episternum.

The results are illustrated in table 4.

Table 4. Results of conducting 10 squats each in an ob-

served time interval of t = 1.5 s: vz is the absolute error of

velocity in vertical direction compared to 0 m/s; the accu-

mulated displacement dacc compared to 80 cm; the maxi-

mal magnitude of the performed squats Asquat; total dis-

tance moved during the window of d1.5 s.

vz[m/s] dacc[m] Asquat[m] d1.5 s[m]

µ 0.197 0.22 0.41 1.04

σ 0.132 0.13 0.03 0.14

4. Discussion and conclusions

The achieved detection rates show that one triaxial ac-

celerometer is effectual to develope a dependable fall de-

tection system. Using neuro-fuzzy allows an explicit de-

scription of a fundamental knowledge base without losing

generalization ability. The defined fuzzy inference rules

and the classification with a neural network give satisfying

results for three fall scenarios. By defining additional ade-

quate rules for the collapse fall scenario sensitivity should

be optimized. Of course, more fuzzy rules will lead to

higher computing time.

In order to obtain meaningful results in detecting one’s

velocity and displacement it is indispensable to minimize

noise and peaks by simultaneously preserving the signal

information. As the two acceleration components, grav-

ity and body acceleration, overlap both in time and in fre-

quency, they cannot be easily separated.

Without a continuously alignment of the sensor axes with

respect to the world coordinate system accurate results

were nearly impossible to achieve. Only exercises or activ-

ities with a fix orientation of the sensor axes lead to satisfy-

ing results. Consequently, the method applied on the sen-

sor used in this study has to be improved in further works.

In this case it is inevitable to expand the system by one

or more further sensors, e.g., a gyroscope. By using addi-

tional sensors a correction of the sensor axes can be per-

formed in real time. The accelerometer provides informa-

tion about the movement in a specific direction whereas the

gyroscope measures the change in orientation. This com-

bination will provide a robust system determining veloc-

ity and displacement from real acceleration data. Never-

theless, for restricted tasks, e.g., rehabilitaion exercises,

the presented methods are sufficient. Beyond controversy,

both velocity and displacement provide important informa-

tion that can be used for different applications.

References

[1] Niemann H. Klassifikation von Mustern. Springer, 1983.

[2] Struck M, Dinh C. A new real-time fall detection approach

using fuzzy logic and a neural network. In Proceedings of the

6th International Workshop on Wearable, Micro and Nano

Technologies for the Personalised Health, pHealth. 2009; .

[3] Weigand C. Use and Implementation of a Medical Commu-

nication Standard in Practice. In IEEE Computers in Cardi-

ology Proceedings. 2005; 319–322.

[4] Struck M, Pramatarov S, Weigand C. Method and system

for standardized and platform independent medical data in-

formation persistence in telemedicine. In IEEE Computers

in Cardiology Proceedings. 2008; 257–260.

[5] Struck M. Automatische Registrierung merkmalsarmer
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