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Abstract

The PhysioNet Challenge 2010 is to recover miss-

ing segments of a particular signal in the given multi-

parameter physiologic data set. In this paper we propose

a contextual information based framework to achieve ro-

bust reconstruction. For a given target signal that is to be

reconstructed, our algorithm intelligently choose among

three sub-algorithms to best recover the missing segments.

Experiments are carried out on the Physionet/ CinC Chal-

lenge 2010 data sets. The results show that the proposed

method is particularly effective on signals that have well

aligned contextual signals.

1. Introduction

Real-time monitoring of physiologic signals is an im-

portant clinical tool for intensive care of patients. How-

ever, transient corruption or loss of one or more signals

could prevent accurate interpretation of the signals and

mislead the downstream analysis. Therefore robust re-

construction of physiologic signals can be very useful in

real-world monitoring scenario. The reconstructed signal

should be consistent not only with respect to its previous

history but also with respect to its relationships with other

signals. This calls for an approach that can explore both

the structure of the signal itself and its dependency on sev-

eral other physiologic signals. Due to the rich structure

and high complexity of the problem, robust reconstruction

of physiologic signals utilizing multi-parameter informa-

tion remains a research challenge.

The reconstruction of one physiologic signal from itself,

or several other signals, has been studied extensively in lit-

erature, see [1–6]. Various techniques are available, de-

pending on the different properties of the target signal St,

and the reference signal Sr: wavelet transformation [3],

adaptive filtering [4], just to name a few.

In the PhysioNet Challenge 2010, the target signal can

be any of the given physiologic signals (BP, RESP, ECG,

PLETH, etc). The task of recovering different signals

may differ a lot in nature. Therefore, a good solution

should be able to adaptively choose an algorithm based

on available information so as to deliver the best perfor-

mance. In this paper our proposed reconstruction algo-

rithm consists of three main functional components: linear

regression based prediction, contextual information based

pattern-matching, and the ECG-derived respiration recon-

struction. For a given target signal that is to be recon-

structed, our algorithm intelligently choose among these

three sub-algorithms to best recover the missing segments.

The rest part of this paper is organized as follows: Sec-

tion 2 gives the problem formulation; Our approach is pre-

sented in Section 3; Experiments and results are discussed

in Section 4; Section 5 concludes our algorithms and re-

sults with discussion of possible improvements.

2. Problem statement

The aim of PhysioNet Challenge 2010 is to develop ro-

bust methods for filling in gaps in multi-parameter phys-

iologic signal (including ECG signals, CVP signal, ABP

signal, respiration, etc.). These signals are generated from

multi-parameter recordings of patients in intensive care

units (ICUs). The gaps are signal segments intentionally

removed from original signals, and need to be recovered

‘using any combination of available prior and concurrent

information’.

Figure 1 gives an example of multi-parameter physio-

logic signal and the missing segments. In the rest part of

this paper, we refer to the signal with missing segments as

target signal, denoted by St(t), some times St for short.

We call the signal(s) that the reconstruction is based on the

‘reference signal(s)’, denoted as Sr(t) or St. The recon-

structed signal is denoted as Srec(t) or Srec.

3. Methods

We observe that the performance of the signal recon-

struction strongly depends on the type of signals to be re-

constructed. Instead of designing a single algorithm that is

capable of addressing all these different situations under a
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Figure 1. Typical Multi-parameter Physiologic Signals

and the Gap

unified framework, we proposed a solution that is a com-

bination of several different algorithms. Each of them is

straightforward to implement, and is designed to recover a

specific type of signals. Our algorithm first classifies the

problems into 3 types according to the target signal. The

problem belongs to ‘Type I’ if its target signal has strong

correlation or cross correlation with another synchronized

signal (the cut-off value is set to 0.7 in this work). ‘Type

II’ signals represent target signals which have well aligned

concurrent signals, and thus they fit into the model of Pat-

tern Matching with contextual information. These signals

include ABP, PLETH, CVP, etc. ’Type III’ signals rep-

resent the respiration signals. The respiration signals are

much more noisy than other signals, and have relatively

poor synchronized signals.

Figure 2. Schematic Plot of Signal Reconstruction Process

Different types of problems correspond to different recon-

struction algorithms, as illustrated in Figure 2. In Type I

problem, the missing signal is reconstructed using linear

regression. Type II problem is solved by pattern matching.

Type III problem is solved by the ECG-derived respiration

algorithm. These reconstruction algorithms are elaborated

in the following sections.

3.1. Reconstruction of type I signals by re-

gression

This reconstruction method is based on the observa-

tion that there are strong correlation between Type I signal

(such as ECG signals) and another reference signal (usu-

ally another ECG signal). Our experiments show that the

correlation coefficient between the two signals can reach

0.95. So when moderate error in the reconstructed signal

is tolerable, it is safe to assume linear relationship between

target and reference signals.

St(t) = aSr(t) + b + ǫ (1)

where t is the discrete time indices, a and b are scalar coef-

ficients characterizing linear relation between two signals,

ǫ is the noise or fitting error.

To obtain a and b, we take segments of history data from

both target and reference signals. Denote the data vectors

as St(t1 : tW ) and Sr(t1 : tW ), respectively. The length of

signal segment W is adjustable according to desirable ac-

curacy and computational resource available. Coefficients

a and b can be readily estimated by linear regression.

Therefore if a segment of one Type I signal St is miss-

ing, it can be easily recovered from another signal Sr using

Eq. (1). When there are multiple signals available as ref-

erence signals, our algorithm calculates their correlation

with the target signal, identifies the one that has highest

correlation coefficient with the target signal St, and then

use it to reconstruct the missing target signal. The correla-

tion coefficient is defined by:

corrSt,Sr

def
=

∫

∞

−∞

(St(τ) − S̄t) · (Sr(τ) − S̄r)

Std(St) · Std(Sr)
dτ (2)

Where S̄t and S̄r are the means of St and Sr, Std(St) and

Std(Sr) are standard deviation of St and Sr, respectively.

There are scenarios that the best correlated reference

signal still has low correlation with the target signal, but

the cross correlation between the two is high. This is usu-

ally due to the phrase shift between two signals. There-

fore, in order to search for the reference signal with closest

co-occuring relationship, we also calculate the cross corre-

lation between the target signal St and any other reference

signal Sr

cross corrSt,Sr
(t)

def
=

∫

∞

−∞

St(τ) Sr(t + τ) dτ (3)

And choose the one that has highest correlation or cross
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correlation:

r̂ = arg max
r

(

Max

{

corr(St, Sr)
cross corr(St, Sr)

)

(4)

Once the reference signal is found, we fit the linear re-

gression correlation coefficients and reconstruct the miss-

ing segment of target signal Srec with these parameters.

Note that some post-processing is needed if the best ref-

erence signal is found by using cross correlation; that is,

align the target signal and the reference to compensate the

phrase shift.

3.2. Reconstruction of type II signals by

pattern matching

For Type II signals, we employ a pattern-matching re-

construction algorithm called PatMatch. The idea behind

PatMatch is to use ECG signal for both time-reference and

reconstruction.

Suppose that one ECG signal is chosen as reference Sr.

Each segment of Sr between two consecutive R-waves is

called a ‘frame’. We then treat both signals Sr and St on

a frame-by-frame basis. Let i ∈ I := {1, 2, · · · } be the

indices of frames, and Ti be the discrete time indices cor-

responding to frame i, i ∈ I . We call a frame of refer-

ence signal Sr(Ti) the ‘contextual information’ of St(Ti),
which is its corresponding frame in the target signal. The

philosophy here is, the information that is needed to re-

construct St(Ti) is provided in Sr(Ti). To be more spe-

cific, we assume that whenever Sr(Ti) repeat some previ-

ous pattern Sr(Tj) for j < i ∈ I , then it is highly likely

that St(Ti) will be ‘similar’ to St(Tj). Therefore, when

St(Ti) is not available, it is possible to recover it from

St(Tj). The reconstruction task now reduces to a ‘pat-

tern matching’ carried out between frame Sr(Ti) and all

previous frames Sr(Tn), 1 ≤ n < i. After the best match

Sr(Tj) is found, St(Ti) can be reconstructed by simply

‘cut and paste’. Please note that in the ’cut and paste’ step,

we need to fill in 0s if the length of Ti is bigger than Tj ; on

the other hand, we just ignore the tailing signals in St(Tj)
if the length of Tj is bigger than Ti.

Note that this assumption is by no means verified from

physiological point of view. The relationship between

two such physiologic signals is far more complex (think

about the underlying mechanism that generates these sig-

nals). We make this assumption here because of the con-

venience it brings about: it leads to a simpler and robust

algorithm which captures the information content that Sr

carries about St. Reconstruction results in Section 4 shows

reasonable performance for a wide range of signals.

A key component that affects performance much is the

metric that we use to compare two frames. In this work,

we use a weighted combination of correlation coefficients

Figure 3. Illustration of the Pattern Matching Algorithm

and the square of Euclidean distance between two frames:

sim (Sr(Ti), Sr(Tj)) =λ · [corr(Sr(Ti), Sr(Tj))]+

(1 − λ) · ‖Sr(Ti), Sr(Tj)‖
2

(5)

The similarity measure sim (Sr(Ti), Sr(Tj)) considers

both the metrics in the Event 1 and Event 2 evaluation. The

weight λ is learned by Powell Search in the training data

sets A and B. Powell Search is an efficient and powerful

search algorithm for finding the minimum/maximum of a

un-derivable function with multiple parameters. Please re-

fer to [7] for the Powell algorithm details. The optimal

value of λ we obtain in the training sets is 0.562, slightly

biased toward the correlation between two frames. The

Pattern Matching algorithm details, including frame detec-

tion, closest frame identification, ’cut and paste’ with 0

filling, are summarized in Algorithm 1.

3.3. Respiration signal reconstruction

The Type III signals, i.e. Respiration Signals, are par-

ticularly hard to reconstruct due to the intrinsic irregular

patterns of that signal and the lack of well aligned contex-

tual signals. We have tried the Pattern Matching algorithm

but the result is very poor, indicating the Pattern Matching

algorithm is not suitable for this type of signals. We in-

stead employ the ECG-Derived Respiration idea for recon-

structing a respiration signal [5]. It’s based on the relation

between the movement of ECG electrodes on the chest sur-

face and the respiratory cycle. We first identify the peaks

of an ECG signal and use the same algorithm described in

[5] to derive the missing Respiration signals.

4. Experiments and results

The 2010 PhysioNet Challenge was to predict the last

30 seconds of a physiological waveform given 9 minutes

and 30 seconds of its previous history and 10 minutes of

N different concurrent physiological recordings (sampled
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at 125 Hz). There are three datasets (set A, B and C) in

total, each of which contains 100 series of records. The

evaluation metric is the sum of quare errors (Event 1) and

correlation (Event 2) between reconstructed signals and

the ground-truth. Results on the three datasets show that

our models effectively reconstruct the missing signals. We

achieve the accumulative score of and 47.74 at event 1 and

65.48 at event 2 in the final evaluation Set C. Compared to

Set C, we obtain better performance in Set A and B in both

Events. The results in these datasets are listed in Table 1

Table 1. Reconstruction Results in Physionet Datasets

Set A Set B Set C

Event 1 60.31 58.36 47.74

Event 2 76.90 73.52 65.48

5. Discussion and conclusion

There is a relatively big gap in performance between Set

C and other two datasets. A careful look into the results re-

veals that the major reason why Set C is performed poorer

is due to the bad performance of 15 Respiration signals.

Table 2 shows the average score in each type of the sig-

nals (average score is from 0 to 1). It indicates that the

performance in Type I and Type II signals are satisfying.

This also shows that our regression based algorithm and

the PatMatch algorithm are very effective in reconstruction

of Type I and Type II signals. The bad results on Type III

signals suggest that the ECG-derived respiration method

is not suitable for these datasets, or our implementation of

that idea does not performs well.

Table 2. Reconstruction Results By Signal Type

Type I Type II Type III

Number 35 51 14

Event 1 0.82 0.36 0.049

Event 2 0.92 0.60 0.21

In the pattern-matching algorithm, when we are compar-

ing two slices of ECG signal, the similarity metric is the

combination of correlation and square of Euclidean dis-

tance between those two slices. This may not be the best

criterion for comparing two slices of signals. Some other

metrics, which take the shape of the wave form into con-

sideration, might be better for this problem.

To conclude, the aligned contextual information is cru-

cial for missing signal reconstruction. Our regression

model and PatMatch model effective unitilize the contex-

tual information and successfully reconstruct the missing

segments in Type I and Type II signals.
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