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Abstract 

PCA can be used for cleaning noisy ECGs. With this 

aim, ECG with artificial motion artifacts were generated 

by combining clean 8-channel ECG with noise signals. 8-

channel PCA was applied and then inverted after 

selecting a subset of principal components (PC). Input 

and output of PCA filtering was compared by calculating 

the correlation coefficient and estimating the SNR. 

Above 0dB, the PC corresponding to highest variance 

gave best performance, below 0dB the best PC was the 

second highest or lower variance. When SNR decreased, 

PCA performed better when retaining more number of 

PCs (3 PCs for a SNR=10dB down to 6 out of 8 PC for 

SNR=-10dB). Reducing the number of input ECG 

channels did not yield to a significant difference when it 

was reduced from eight down to two. A method for 

identifying the optimal subset of PC as a function of input 

SNR and number of channels was proposed. This method 

achieved an SNR improvement of 0.95dB-1.92dB. 

 

1. Introduction 

During the last 20 years new ambulatory cardiac 

monitors have been developed for continuous ECG 

monitoring. These devices are portable with an autonomy 

which is increasing with the improvement of low-power 

micro-electronics. Integration of microprocessors allows 

performing some signal processing and automatic 

interpretation. However, in ambulatory conditions, noise 

increases with higher levels of activity of the subject (e.g. 

during exercise). With movement, motion artifact energy 

could be even higher than that of the ECG, resulting in a 

reduction of signal quality that would make interpretation 

very difficult. 

Several methods for noise reduction and motion 

artifact removal have been proposed in literature. 

Traditional denoising techniques were based on time 

averaging [1] and frequency analysis such as filter banks 

[1] or the wavelet transform [2]. In adaptive filtering, a 

filter is applied after adjusting its parameters in time to a 

time varying noise. This is particularly useful when the 

noise is non-stationary as is the case in ambulatory 

motion artifacts. However, a reference signal has to be 

additionally recorded together with the ECG. Several 

adaptive filtering approaches have been proposed to 

obtain an adequate reference signal such as measurement 

of skin-electrode impedance [3, 4], skin stretching 

measured with optical sensors [4, 5] or accelerometers [6, 

7].  

As sources of ECG and motion artifacts are 

uncorrelated, blind source separation (BSS) techniques 

could be used for separating both signals [8, 9]. In order 

to apply those methods, a multi lead ECG recording is 

required and the different recorded leads should be 

linearly independent. Although these conditions are 

commonly met in ambulatory holter monitors, there is 

very little in literature describing the use of BSS 

techniques for ECG denoising. Principal Components 

Analysis (PCA) has been used for reducing noise in 

single lead ECG segmented in time intervals [10]. A 

combination of PCA and ICA was also proposed by 

Chawla [11] for ECG denoising.  

For ambulatory applications, it should be taken into 

account the limitations in computational power and 

memory. With this aim, PCA was investigated for its 

relatively low computational complexity. 

 

2. Methods 

2.1. Principal component analysis (PCA) 

Principal Component Analysis (PCA) is a technique 

this is commonly used in multivariate statistical analysis. 

Its goal is the reduction in the number of dimensions from 

a numerical measurement of several variables. With this 

dimensional reduction, this technique looks for 

simplifying a statistical problem with the minimal lost of 

information. This method is also used in signal processing 

for separating a linear combination of signals generated 

from sources that are statistically independent. This is 

performed by representing the data with a new coordinate 

system. This transformation is bidirectional and no 

information is lost [12].  

Applying PCA to n ECG leads that are statistically 

independent gives n new signals or principal components. 

The first signal corresponds to the principal component 

with highest variance while the n-th signal corresponds to 

the principal component with the lowest variance. In low 

noise conditions, principal components with higher 
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variances have information mainly from the ECG while 

low variance’s components correspond to noise [13]. 

However, in ambulatory conditions, motion artifacts can 

have higher energy levels than the ECG signal, making 

selection of principal components more complex.  

 

2.2. Data collection 

Clean ECG signals were obtained by recording 8-

unipolar lead ECGs from 5 healthy subjects. For each 

subject 8 sets of 10 seconds were obtained while the 

subject was at rest. 8-channel noise recordings were 

obtained by placing 9 electrodes on the back of the 

subjects at the height of the lumbar curve where ECG 

signals were negligible. Then, the subjects were asked to 

move randomly. For each subject, 8 sets of 10 seconds 

were recorded. Signals were obtained with a sampling 

frequency of 1000 Hz, using a generic biosignal 

acquisition system from g.Tec (g.USBamp). All 

recordings were filtered by a high pass filter with cut-off 

frequency of 0.5 Hz and a 50 Hz notch filter. Each 8-

channel noise signal was multiplied for a gain factor and 

added to each 8-channel clean ECG in order to obtain a 

specific SNR. SNR values ranging from 10 to -10 dB 

were considered. For each SNR value 400 different 

combinations of clean ECG and noise were selected. 

Figure 1 shows one example of a clean ECG, a pure noise 

and a combination of both signals. 

 

 
Figure 1. Extract of a clean ECG, a noise and the sum of 

both signals. The SNR of the combined signal is of 0 dB. 

 

2.3. Evaluation criteria 

PCA was applied and then inverted after selecting a 

subset of principal components. For evaluating the signal 

improvement, the correlation coefficient between the 

noise-free signal and the output after PCA filtering was 

computed. In addition, Signal to Noise Ratio (SNR) 

before and after PCA filtering was estimated. In order to 

calculate the SNR, the noise energy was estimated by 

subtracting a template averaged beat at the location of 

every R peak. The median and median absolute deviation 

(MAD) values over all ECG leads were considered as 

representative values for each signal. As median and 

MAD are more robust to outlier values, they were 

preferred to the arithmetic mean and standard deviation. 

 

3. Results 

Half of the dataset (i.e. 200 signals for each SNR 

value) with simulated signals formed with the 

combination of clean ECG and motion artifact noise at 

different SNR values was used as a learning dataset to 

evaluate the performance of Principal Component 

Analysis (PCA).  

SNR values from 10 to -10 dB in steps of 1 dB were 

considered. Both the noisy signal and the output signal 

from PCA filtered were then compared with the clean 

ECG in order to study the improvement due to the 

algorithm.  

 

3.1. Best principal component 

Initially, PCA was applied to the 8 ECG lead signals. 

Only one of the 8 resulting components was retained and 

the PCA projection was inverted in order to obtain the 

filtered original 8 ECG leads.  

Selecting the principal component (PC) with highest 

variance gave in general highest correlation coefficients 

for high SNR (over 0 dB). However, for SNR values 

between 0 and - 7dB the principal component which had 

highest ECG content was the second one with highest 

variance. Between -8 and -10 dB the PC which gave the 

best the highest correlation coefficient was the 4
th

 one. 

Overall, correlation coefficient values were below the 

correlation values between noisy and clean ECG. The 

correlation coefficient dropped in median 0.08 (MAD = 

0.09) and the SNR improvement was in median of 0.81 

dB (MAD = 2.34) when only the component with highest 

variance was retained.  

 

3.2. Number of principal components 

The optimal number of principal components in 

function of the SNR was then investigated. PCA was 

applied to the 8 ECG lead signals. Then, the PC’s were 

sorted by their ranking obtained as explained in previous 

section (i.e. correlation coefficient) in descending order. 

Finally, n (n=1, 2, ..., 8) components were selected and 

the PCA projection was inverted.  

Overall, the best values were obtained with n=3 giving 

a small correlation coefficient improvement with median 

of 0.02 (MAD = 0.05) and the SNR improvement was in 

median of 1.49 dB (MAD = 4.62). For low SNR’s, PCA 

performed better when retaining more number of PCs (4 

PC’s for a SNR=-8dB and 6 PC for SNR=-9 and -10dB). 
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3.3. Principal component selection as a 

function of SNR 

Combining the results obtained in the previous 

sections, the best subset of PC’s was selected for each 

SNR value. Figure 2 shows the subset of PCs that gave 

best results when considering correlation.  

 

 
Figure 2. Subset of PCs as a function of the SNR. PC 1 

corresponds to the one with highest variance. PC 8 

corresponds to the one with lowest variance. 

 

In order to evaluate the performance of a PCA-based 

noise reduction algorithm with this PC’s selection, the 

second half of the dataset was considered (200 signals) as 

evaluation dataset. PCA was computed, the best PC 

subset for each SNR values (as plotted in figure 1) was 

retained and PCA projection was inverted. 

As a first reference, the results were compared with the 

direct comparison of the noisy ECG and the clean ECG 

(i.e. no denoising). 

As a second reference the optimal set of principal 

components was calculated for each signal within the 

dataset and SNR value independently. The optimal set 

was defined as the one (from all possible combinations) 

that gave the highest correlation coefficient between the 

clean ECG signal and the output of the inverted PCA. 

The median correlation coefficient for each SNR value 

and method is plotted in figure 3. Figure 4 shows the 

median SNR improvement for each SNR value. As can be 

seen in the figures, applying PCA can give a significant 

improvement, especially with low SNR values 

(improvement in the correlation coefficient of 0.16 and 

SNR 6.39 dB with SNR=-10dB) when the optimal PC can 

be indentified for each noisy signal. However, the subset 

of PC’s as a function of SNR as proposed above, gave a 

smaller improvement (improvement in the correlation 

coefficient of 0.03 and SNR 1.92 dB with SNR=-10dB). 

 
Figure 3. Correlation coefficient of PCA output and clean 

ECG signals plotted against SNR value when the selected 

PC were retained (PCA alg), the optimal subset of 

principal components were retained (optPCA) and the 

median correlation coefficient of noisy ECG with clean 

ECG signals (noPCA). 

 

 
Figure 4. SNR improvement of PCA output and clean 

ECG signals plotted against SNR value when the selected 

PC were retained (PCA alg) and the optimal subset of 

principal components were retained (optPCA). 

 

3.4. Number of input channels 

The number of input channels was also investigated. In 

addition to eight input channels, subsets of input channels 

of six, four and two channels were also considered. 

Following the same procedure as in the previous study, 

for each input subset, the optimal component subset 

(considering the highest correlation coefficient) was 

found for each signal and SNR value. To obtain 

consistent results only one lead (common for all subsets) 

was considered for comparing the input and output of the 

PCA algorithm.  

Overall, the improvement in the correlation coefficient 

was very similar for all cases. The best results were 

obtained when used eight input leads (median=0.78 

MAD=0.16). For six (median=0.71, MAD=0.17), four 

(median=0.72, MAD=0.17) and two (median=0.74, 

MAD=0.19) input leads the correlation coefficient 

improved slightly less.   
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The SNR improvement gave bigger differences with 

median of 4.35 dB (MAD=3.37) for eight input leads, 

3.95 dB (MAD=3.46) for six, 2.72 (MAD=2.94) for four 

and 0.38 (MAD=3.66) for two. Values are given for the 

optimal component subset. 

Figure 5 shows the results against the different values 

of SNR considered. Decreasing the number of input 

signals did not yield to a big drop in the correlation 

coefficient (median drop of 0.49 and 0.42 for 8 and 2 

input leads respectively at SNR=-10dB). The SNR 

improvement dropped in median value from 4.35 dB 

down to 0.38 dB (8 and 2 input leads) at SNR=-10dB. 

 

 
Figure 5. Correlation Coefficient of PCA output and clean 

ECG signals plotted against SNR value for different 

number of input signals. The optimal principal 

component for each signal and SNR was retained. 

 

4. Conclusions 

This work investigated the performance of PCA in 

denoising ECG signals recorded in ambulatory 

conditions. A simulated database formed by the 

combination of clean ECG signals with noise scaled to 

different levels of energy was developed for evaluation. 

It was observed, that for high SNR values, retaining 

the principal components (PC) of highest variances gave 

best performance. When SNR decreased, the PCs 

corresponding to highest variance were related to high 

amplitude noise. Reducing the number of input ECG 

channels did not yield to a big difference when it was 

reduced from eight down to two.  

A method for identifying the optimal subset of PC as a 

function of input SNR and number of channels was 

proposed. This method achieved an SNR improvement of 

0.95 dB at 10 dB of SNR and 1.92 dB at SRN=-10dB. 

As a limitation of this study, it should be noted that 

some stationary has been assumed as signals were of 10 

seconds length. The performance under shorter duration 

noise was not studied. It should be noted that the 

parameters used for evaluation the signal improvement 

were the correlation coefficient and the estimation of 

SNR which for some applications, they may not always 

characterize best the signals under study. 

It was observed that an optimal selection of PCs 

yielded to a significant improvement of SNR. This 

suggests that other method for automatic component 

selection could lead to a better performance. Furthermore, 

other techniques for signal decomposition such as 

Independent Component Analysis could yield to a better 

separation of signal and noise, although that would 

increase the computational complexity. 
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