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Abstract

Heart rate variability (HRV) may provide anesthesiol-
ogists with a noninvasive tool for nociception monitoring
during general anesthesia. A novel wavelet transform car-
diorespiratory coherence (WTCRC) algorithm was used to
calculate estimates of the linear coupling between heart
rate and respiration. WTCRC was tested on clinical data
from 19 pediatric patients receiving general anesthesia
during dental surgery. WTCRC decreased during nocicep-
tion, and increased following additional anesthetic drugs.
Data were divided into categories with normal respiratory
rate (RR) (in the HF band) and low RR (in the LF band),
then split into 2-minute windows. WTCRC and LF/HF
were calculated for each window and compared in each
category. The algorithms showed correlations of -0.5506
and -0.1403 for data with normal and low RR, respectively.
WTCRC and LF/HF are comparable when the RR is nor-
mal, and WTCRC signi�cantly outperforms when the RR
is low.

1. Introduction

Anesthesiology is commonly regarded as the practice of
autonomic medicine [1]. Noxious stimuli during surgery
cause the autonomic nervous system (ANS) to invoke a
stress response, increasing sympathetic tone and decreas-
ing parasympathetic tone. An excessive and prolonged
sympathetic response increases the risk of suffering from
peri-operative complications and delayed recovery. In-
deed, the surgical stress response is a key factor in post-
operative morbidity [2]. Anesthesiologists must therefore
control the ANS by administering analgesic drugs.

There is currently no clinically available monitor of the
ANS. Anesthesiologists are guided by observation and in-
terpretation of trends in patients' vital signs, which are
only indirect measures of nociception. Confounding fac-
tors such as pre-existing medical conditions and inter-
patient variability cause dif�culties in such indirect estima-
tions. An automated nociception monitor that directly as-
sesses ANS activity would be very useful for general anes-
thesia, providing anesthesiologists with feedback about the

adequacy of analgesia. Heart rate variability (HRV) shows
promise as a noninvasive nociception monitor [3,4].

The Fourier-based HRV LF/HF power ratio is the most
widely used measure of autonomic balance, but is inade-
quate for nociception monitoring. This analysis transforms
the HRV to the frequency domain, and divides the result-
ing power spectrum into low frequency (LF, 0.04-0.15 Hz)
and high frequency (HF, 0.15-0.4 Hz) bands. LF/HF is
the ratio of powers in these bands. Fourier analysis is
poorly localized in time, requiring data windows of at least
2 minutes for accurate results. Furthermore, the LF/HF ra-
tio theory itself is �awed. Most believe that the LF band
power is affected solely by sympathetic tone, and that the
HF band power is affected solely by parasympathetic tone
[5]. Some studies have cast doubt on this simple view
of the frequency bands. A study of HRV under sympa-
thetic blockade suggests that respiratory sinus arrhythmia
(RSA) in the HF band is driven by parasympathetic tone
and restrained by sympathetic tone [6]. The observed HF
band power thus re�ects the net balance of the two ANS
branches. Finally, rigid HF band limits at 0.15 and 0.4
Hz are not guaranteed to capture RSA. If the respiratory
rate (RR) drops below 9 breaths/min, the RSA power will
fall in the LF band, signi�cantly distorting the LF/HF ra-
tio. Some work has been done to adjust HF band limits
dynamically, based on the heart rate (HR) and RR [7].

Recently, a novel wavelet transform coherence (WTC)
algorithm was applied to HRV analysis [8]. The algorithm
estimates the strength of linear coupling between the HR
and respiration, averaged over the HF band. In a body posi-
tion experiment, WTC was shown to decrease during pos-
ture change, and to stabilize at lower levels while standing
upright as compared to laying supine. WTC may be a bet-
ter measure of autonomic balance than LF/HF, but it still
uses rigid HF band limits.

We have developed an enhanced WTC algorithm,
dubbed wavelet transform cardiorespiratory coherence
(WTCRC), that eliminates the concept of frequency bands.
Most HRV studies use conscious, spontaneously ventilated
subjects, leading to a highly variable RR. In contrast, pa-
tients receiving general anesthesia are unconscious and
usually mechanically ventilated, and thus have a precise
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and locally stationary RR. WTCRC estimates coherence
speci�cally at the respiratory frequency.

This paper describes the WTCRC algorithm and inves-
tigates its performance on clinical data in comparison with
the LF/HF ratio.

2. Method

2.1. Wavelet transform cardiorespiratory
coherence

The WTCRC algorithm �rst calculates the continu-
ous wavelet transform for the heart rate time series
(tachogram) and a respiration wave (from e.g. capnogra-
phy, spirometry). At any given scale, the wavelet transform
is given by:

Wn (s) =
N � 1X

n 0=0

xn 0	 �
�
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s

�
; (1)

wherexn is the input time series,n is the time index,s is
the scale,�t is the sampling time, and the asterisk (� ) is
the complex conjugate operator. The result is a 2D matrix
of wavelet coef�cients at different times and scales. We
denote the wavelet coef�cients for the tachogram and res-
piration asW T

n andW R
n , respectively.

From the wavelet coef�cients, the algorithm calculates
the wavelet power spectrum for each signal, as well as the
cross power spectrum:
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Power densities are then smoothed in time with a Gaussian
window (e� t 2 =2s2

) and in scale with a rectangular window
(length 0.6 x scale).

The algorithm then calculates the coherence estima-
tor, as the squared absolute value of the smoothed cross-
wavelet spectrum normalized by the smoothed absolute
values of the individual wavelet spectra:
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where the angled brackets (hi) denote the smoothing oper-
ator. The coherence estimator is a 2D matrix of coherence
values at each time and frequency.

Finally, the algorithm extracts the coherence values at
the known respiratory frequency at each point in time, us-
ing RR values calculated from the respiration wavea pri-
ori. WTCRC outputs a 1D vector of time-varying coher-
ence values from the respiratory frequency. Coherence can
range from 0 (no coherence) to 1 (perfect coherence).

2.2. Clinical protocol & data collection

Following ethics approval and informed consent, data
were collected from 20 healthy pediatric patients receiving
general anesthesia during dental surgery. Subjects were
aged 3-6 years, had ASA physical status I or II, were free
of cardiorespiratory disease, and were not taking medica-
tions that alter ANS function. Subjects were anesthetized
with propofol and remifentanil. Surgeries provided mul-
tiple periods of nociceptive stimuli, including dental dam
insertions, tooth extractions, cavity drillings, and cap in-
sertions. Nociceptive stimuli were often followed by an
increase in the anesthetic infusion.

Ventilatory parameters were modi�ed during each case,
to investigate their effect on HRV. Each case began with a
low RR of 8 breaths/min, and the RR was later increased
to 16 breaths/min. Ventilatory changes were overridden if
the CO2 exceeded acceptable limits.

Physiological data were recorded throughout each case.
The electrocardiogram (ECG), capnography (CO2, O2),
and spirometry (�ow, pressure) waves, as well as RR
trends, were recorded using Datex/Ohmeda S/5 Collect
software (GE Healthcare, Helsinki, Finland). Waves were
recorded at 300 Hz, and trends at 0.1 Hz. Data were anno-
tated with markers describing relevant surgical events (e.g.
nociceptive surgical stimuli, patient movement, changes in
anesthetic administration, ventilatory changes).

2.3. Data analysis

Data were �rst manually selected and categorized for
analysis. Each case was visually inspected, and segments
with signi�cant ECG or respiratory artifacts were excluded
from analysis. One case was affected by signi�cant ECG
artifacts throughout, and was thus excluded. The remain-
ing 19 cases comprised a total of 730 minutes of clean data.
Case data were divided into two categories: those with nor-
mal RR (in the HF band,> = 9 breaths/min) and those
with low RR (in the LF band,< 9 breaths/min). Normal
and low RR categories comprised a total of 498 and 232
minutes of data, respectively. Subsequent processing was
entirely automated in Matlab (The Mathworks Inc., Nat-
ick, MA).

Heart rate and respiration signals were prepared for
analysis. ECG R peaks were detected using a �lter bank al-
gorithm [9]. Each R-R interval series was converted into a
tachogram. The tachogram was resampled onto an evenly-
spaced 4 Hz grid using Berger's algorithm [10]. The
respiratory �ow wave was used for analysis in 18 cases.
Spirometry was unavailable in one case, and the CO2 wave
was used instead. The respiratory wave was downsampled
to 4 Hz using standard low pass �ltering and decimation.
The RR trend (derived from the CO2 wave) was upsampled
to 4 Hz using a repeater. Minor tachogram artifacts were
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Figure 2. Correlation of average WTCRC vs. LF/HF ratio,
for data with normal and low RRs.

duces a time lag in real-time analysis. Though we used 30
seconds of padding in our method, the padding could be
much shorter in practice. Edge artifact width depends on
the respiratory frequency; higher frequencies have shorter
edge artifacts. The padding width could thus be dynam-
ically adapted to the current RR. In the future, we will
investigate alternative approaches to eliminating edge ar-
tifacts, with the goal of performing ultra short term ANS
monitoring in real time.

WTCRC performed well compared to the LF/HF ratio
in testing on clinical data. LF/HF is not a gold standard
for comparison, but it is the most widely used measure of
autonomic balance. Some correlation is therefore desir-
able, but perfect correlation would suggest that WTCRC
is no better than LF/HF. WTCRC and LF/HF showed a
moderate correlation when the RR was normal (in the HF
band), and almost no correlation when the RR was low (in
the LF band). When the RR was low, WTCRC continued
to function properly while LF/HF did not. The LF/HF ra-
tio performance could be improved by adopting respiratory
frequency localization similar to WTCRC.

WTCRC is very highly localized in time. Accuracy of
the LF/HF ratio begins to decrease when the analyzed win-
dow is shorter than 2 minutes. Conversely, WTCRC can
detect changes in autonomic balance in less than one sec-
ond. Our method of averaging WTCRC over each win-
dow was an arti�cial measure taken for comparison with
LF/HF, and would not be performed in practice.

WTCRC consistently decreased during periods of no-
ciception, and increased following additional anesthetic
drugs, regardless of the RR (Fig. 1). It responded quickly
to changing autonomic balance. WTCRC should be a bet-
ter nociception monitor than the traditional LF/HF ratio.
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