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Abstract

The early detection of myocardial ischemia is an essen-
tial lever for its successful treatment. We investigated an
ECG monitoring system with 3 electrodes. Optimal elec-
trode positions are determined using a cellular automaton.
The spatially heterogeneous effects of myocardial ischemia
were modeled by altering 4 electrophysiological parame-
ters: action potential amplitude and duration, conduction
velocity as well as resting membrane voltage. Both, trans-
mural heterogeneity and the in�uence of the border zone
were considered in the simulations on three patient mod-
els. The detection of myocardial ischemia is based on ST
segment deviation from the physiological case. The sig-
nals used to �nd the best electrode positions comprise is-
chemic regions with different transmural extents in all 17
AHA segments. We show which ischemic ECGs can be de-
tected given a realistic signal-to-noise ratio, false positive
rate and maximum response time of the system.

1. Introduction

Wearable patient monitoring systems may become
widely used considering the impact of myocardial is-
chemia as leading cause of morbidity and mortality. Is-
chemia due to myocardial infarction (MI) is often invisible
even to the standard 12-lead ECG in case of”electrically
silent” non-ST elevation MIs (NSTEMIs) [1, 2]. Instead
of aiming for a complete coverage of ischemic events,
this study intends to provide the positioning for a three-
electrode monitoring system that is optimized to detect a
maximum variety of early-stage MIs.

Ischemia at 10 minutes after onset (phase Ia, stage 2)
was simulated in 765 constellations, comprising combi-
nations of 17 AHA segments [3], 3 assumptions on the
border zone radius and 5 ischemia radii for 3 patients.
To cope with the computational complexity of the study,
a cellular automaton (CA) was parameterized to resem-
ble patient-speci�c simulations carried out with a mon-
odomain reaction-diffusion system.

2. Methods

2.1. Anatomical modeling

To reduce the effect of individual anatomical modeling
methods, the study was performed three patient datasets
with a large variability. Two patient models were ob-
tained from segmentation of MR images. Resolution was
2.27 x 2.27 x 4 mm3 (heart), 4 x 4 x 4 mm3 (thorax) for pa-
tient K (male, age 61, posterior and posterolateral infarc-
tions) and 1 x 1 x 1 mm3 (heart), 1 x 1 x 2 mm3 (thorax) for
patient D (male, age 27, healthy). The anatomical model
for patient VM was produced by segmentation of the Visi-
ble Man dataset. While the �rst two models include tissue
classes for ventricles, skeletal muscle, fat, blood, lungs,
kidneys, liver and spleen (with only patient D having an
atrial model and only patient K having a stomach model),
the Visible Man dataset distinguishes between 31 tissue
classes, with the disadvantage of the imaging data not be-
ing takenin vivo.

Fiber orientation was introduced for the ventricular my-
ocardium using a rule-based approach [4]. For simulations
of cardiac source signals, the anatomical datasets were in-
terpolated to an isotropic voxel size of 0.4 mm (patients
VM and D) or 0.5 mm (patient K).

2.2. Electrophysiological modeling

Ischemia simulations were carried out using a cellular
automaton. Each cardiac voxel represents a set of my-
ocytes and can be excited by either an external stimu-
lus or by activated adjacent voxels. As soon as a cell
becomes activated, a prede�ned transmembrane voltage
(TMV) course is triggered. These TMV courses were ex-
tracted from simulations using the monodomain reaction-
diffusion systemacCELLerate[5].
To provide for transmural heterogeneity, a patch with
a voxel side-length of 0.1 mm was divided trans-
murally into three slices (subendocardial, midmyocar-
dial and subepicardial) each representing a fraction of
40% / 20% / 20% [6]. Ten Tusscher's cell model [7] was
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incorporated to extract 120 TMV courses across the ven-
tricular wall. Additionally, a whole-heart simulation was
carried out for each patient geometry in order to obtain
the APD 90 for every cardiac voxel. Besides the trans-
mural heterogeneities described by ten Tusscher et al. [7],
the conductivitygKs was two times larger at the apex
than at the base [6]. With the provided information, it
became possible to assign each cardiac voxel an individ-
ual action potential (AP) regarding the morphology with
respect to its transmural position as well as regarding its
APD 90. Anisotropic tissue conductivities inside the ven-
tricular wall and the endocardial stimulation pro�le emu-
lating the conduction system were set according to [6].

2.3. Modeling of myocardial ischemia

Weiss et al. presented modi�cations to ten Tusscher's
model, providing for the three main effects of cardiac
ischemia: extracellular hyperkalemia, acidosis and hy-
poxia [8]. The model comprises transmural hetero-
geneities as well as the degree of ischemia regarding the
location of the myocyte with respect to the site of the oc-
clusion by introducing a so-called zone-factor (ZF) rang-
ing from 0 representing healthy tissue to 1 representing
voxels in the central ischemic zone (CIZ). The voxels with
a ZF between 0 and 1 form the border zone (BZ).
Our approach was to extract the spatially heterogeneous
electrophysiological impact of the biochemical effects de-
scribed above, using a tissue patch with a voxel side-length
of 0.1 mm representing a slice of the ventricular wall. The
BZ in that acCELLeratesimulation was made up of 180
voxels with a linearly increasing ZF. The transmural extent
of the patch was 160 voxels with an subendo / mid / subepi
distribution of 40% / 20% / 20%, again. The results of the
monodomain simulation were used to extract four charac-
teristic electrophysiological parameters describing the im-

pact of myocardial ischemia: resting membrane voltage
(RMV), AP amplitude,AP D 90 and conduction velocity.
These parameters were then used to modulate the TMV
courses for the CA with respect to the ZF and the transmu-
ral position of the activated voxel.
The ischemia implementation for the CA was validated by
calculating the root mean square aberration of the ST seg-
ment (ranging from 120 ms to 250 ms) with respect to the
acCELLeratesimulation. This was done for the six Wilson
leads as well as for the three Einthoven leads for 20 setups
representing different locations and transmural extents of
the ischemic region (180 signals, results see Sect. 3.1).
After parametrization, the CA was used to run the study,
where the left ventricular wall of all three datasets was di-
vided using the 17-segment AHA scheme [3]. Hemispheri-
cal ischemic regions were placed at the center of each seg-
ment. Their radii, comprising both the CIZ and the BZ,
varied from 5 mm to 25 mm for two of the anatomical mod-
els. The upper limit for the Visible Man dataset was set to
30 mm due to the thicker ventricular wall. 3 distinct series
of simulations were carried out using different BZ radii:
2.8 mm, 4.8 mm and 9.6 mm. Simulations using the CA
were conducted with a time step of 0.1 ms. The results
were saved every 2 ms.

2.4. Forward-calculation

The TMVs from the simulations were interpolated on
tetrahedral meshes of the respective anatomy to facilitate
calculations with the �nite element method. The bidomain
model was used to calculate extracellular potentials on the
body surface. It achieves a macroscopic treatment of intra-
and extracellular space by taking into account the diver-
gence of their respective current densitiesr (� er � e) and
r (� i r � i ), which are assumed to compensate one another.
This leads to an equation with the desired link between
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Figure 1. Dependency between the zone factor and the AP amplitude (a) as well as theAPD 90 (b) normalized to the
physiological value in each transmural layer. AP amplitude and duration fall with increasing ZF. Incosistently with this
�nding, the algorithm considers diffused TMV courses to be APs in regions near the central ischemic zone and detects
higher APD90. Effects are most pronounced in subepicardial layers.
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Figure 2. 238 Einthoven II signals for Patient D. Each
signal belongs to a different combination of border zone
and central ischemic zone radii.

TMVs Vm and extracellular potentials� e, where the con-
ductivity tensors� e and� i are set according to [9].

r (� i r Vm ) = �r (( � i + � e)r � e) (1)

2.5. Finding optimum electrode positions

593 - 815 electrodes were equally distributed on each
torso. Then, the ST deviation, de�ned as the absolute value
of the sum of the 25 samples between 110 ms and 158 ms,
was calculated for each possible set of 3 electrodes. To al-
low for a robust detection of ischemia under realistic noise
conditions (noise amplitude 50 µV, SNR – 4.86 dB) within
100 heart beats and a maximum error rate of 0.1 %, the
minimum ST deviation was set to 980 µV. Afterwards, 70
electrode positions which were able to detect the most is-
chemia setups for a single anatomical model were mapped
onto the 2 other torsi and common statistics were obtained.

3. Results

3.1. Electrophysiological effects of ischemia

The RMV showed a nearly linear ascent from a physi-
ological value of – 85 mV in healthy tissue to – 64 mV in
the CIZ, not depending on the transmural location. Be-
sides the increase of the RMV within the BZ, a decrease
of the maximum TMV could be observed. Hence, the am-
plitude of the AP decreases signi�cantly (Fig. 1 (a)). The
effect varies transmurally and is most expressed in the epi-
cardium. Each transmural course was normalized to its
value in healthy tissue. The APD90 falls with increasing
zonefactor (Fig. 1 (b)). The scheme is broken near the CIZ:
here, the algorithm considers diffused TMV courses to be
APs and detects higher APD90. Because the CA is not able
to model diffused currents, it was preferred to model low
amplitude APs with short duration instead of just the RMV
where diffused TMV courses are present inacCELLerate.
The fourth electrophysiolgical parameter – the conduction

#1 #2 #3

Figure 3. Optimum electrode positions determined con-
sidering all patient geometries. #1 is the optimum con�g-
uration for a border zone of 2.8 mm, #2 for one of 4.8 mm
and #3 for 9.6 mm, respectively.

velocity – showed a linear decline to 20% of the physio-
logical value and no transmural variation.
The RMS deviation between the ST segment gained
from CA andacCELLeratesimulations was smaller than
0.02 mV for over 50% of the 180 extracted lead signals.
12 signals showed an aberration of more than 0.2 mV –
mostly due to broadened QRS complexes ranging beyond
120 ms. Fig. 2 shows the Einthoven II signals for all 238
simulated ischemia setups of patient D.

3.2. Optimum electrode positions

Electrode positions allowing for the detection of the
highest number of ischemia setups showed inter-individual
scattering. Table 1 shows the detection rates for optimum
electrode positions regarding a single patient and the detec-
tion rates considering all patients using common electrode
con�gurations shown in Fig. 3. Ischemia is harder to detect
for patient VM than for the other two. The smaller the bor-
der zone and the greater the ischemic region, the easier the
detection. Fig. 4 shows which fraction of ischemic setups
could not be detected regarding the 17 AHA segments.

4. Discussion and conclusions

Results in Table 1 show a sensitivity of 49 - 60 %. In
this study, the monitoring system was thus capable of de-
tecting ischemic events almost as reliably as the 12-lead
ECG in clinical studies, which produces typical sensitivi-
ties of 45 % [2] or 60.7 - 72.7 % [1]. The sensitivities in the
two 12-lead studies, however, come with high speci�city
rates of 92 % and 94.9 - 97.1 %. Speci�city rates cannot
be produced in this study since they require a set of simu-
lations that would represent the possible deviations within
the physiological case. The rates can, however, be assumed
to be in the same range, since the underlying mechanism
of detecting ischemic events is the same and a strong cor-
relation between the effects of physiological deviations in
the heart beat and those of ischemia are not expected. The
relatively good performance can therefore be attributed to
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