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Abstract 

 Scoring the severity of illness of ICU patients can 
provide evaluation of a patient’s situation and thus help 
doctors make decisions on what treatment to take. This 
study aimed to develop an artificial neural network model 
for patient-specific prediction of in-hospital mortality. 
Data from PhysioNet Challenge 2012 was used. 12,000 
records were divided to a training set, a test set and a 
validation set, each of which contains 4000 records. 
Outcomes are provided for the training set. A neural 
network model was developed to predict the risk of in-
hospital mortality using various physiological 
measurements from the ICU. Twenty-six features were 
selected after a thorough investigation over the different 
variables and features. A two-layer neural network with 
fifteen neurons in the hidden layer was used for 
classification. One hundred voting classifiers were 
trained and the model’s output was the average of the one 
hundred outputs. A fuzzy threshold was utilized to 
determine the outcome of each record from the output of 
the network. Our model yielded an event 1 score of 
0.5088 and an event 2 score of 82.211 on the test data set. 

 
1. Introduction 

An intensive care unit (ICU) is for patients with the 
most serious diseases or injuries. Most of the patients 
need support from equipment like the medical ventilator 
to maintain normal body functions and need to be 
constantly and closely monitored. For decades, the 
number of ICUs has experienced a worldwide increase 
[1]. During the ICU stay, different physiological 
parameters are measured and analysed each day. Those 
parameters are used in scoring systems to gauge the 
severity of the patients. Many types of severity or 
prognostic scoring systems have been developed for the 
ICU, such as the acute physiology and chronic health 

evaluation system (APACHE II), the simplified acute 
physiology score (SAPS II) and the mortality probability 
model (MPM). Those systems are important for many 
reasons. They provide evaluation of patients’ situations so 
that the intensive care can be restricted to patients most at 
need. While the intensive care improves the outcome for 
seriously ill patients, it comes with an expensive cost. In 
2005, the mean intensive care unit cost is as high as 
31,574±42,570 dollars for patients requiring mechanical 
ventilation and 12,931 ± 20,569 dollars for those not 
requiring mechanical ventilation [2]. The mortality 
assessment is crucial for making the critical decision of 
whether to interrupt the life-support treatments when 
intensive care is considered helpless. Besides, the 
mortality prediction helps doctors determine what 
treatment process to take. 

Most of the prevalent mortality assessment models are 
developed using linear regression over a score computed 
from physiological variables. For example, the SAPS II 
examined 37 variables, and chose 17 that were found to 
be associated with the hospital mortality most 
significantly. The 17 variables include 12 physiology 
variables, age, type of admission (scheduled surgical, 
unscheduled surgical, or medical), and three underlying 
disease variables (acquired immunodeficiency syndrome, 
metastatic cancer, and hematologic malignancy). A score 
is computed using the 17 variables and is converted to a 
probability of hospital mortality using a linear regression 
equation.  

More recently, the data mining techniques have been 
proved to be useful in the ICU mortality prediction [3, 4]. 
The data mining techniques are used to discover patterns 
hidden in large clinical data [5]. The volume of clinical 
data is increasing every single day. It is difficult for 
human experts to extract information from the data by 
looking at them manually. In contrast, the data mining 
techniques can automatically extract information from the 
raw data [6].  
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Among the different types of data mining techniques, 
the artificial neural network is one of the most successful 
methods. It is widely used because of its capabilities like 
nonlinear learning, multi-dimensional mapping and noise 
tolerance [7]. Previous studies reported that the neural 
network models were better than [3, 4, 8] or at least 
similar to [9] the linear regression models.  

This work is in response to the Computing in 
Cardiology/Physionet Challenge 2012 “Predicting 
Mortality of ICU Patients”. The focus of the challenge is 
to “develop methods for patient-specific prediction of in-
hospital mortality”. In this work, we have developed an 
artificial neural network model using data collected 
during the first two days of an ICU stay. The paper is 
organized as follow: Section 2 gives an introduction to 
the data available; the feature extraction methods are 
explained in Section 3; Section 4 gives the prognostic 
model and the performance metrics; Section 5 presents 
the results.  
 
2.  Data 

2.1. Six descriptors and thirty-seven 
 variables 

The data consists of 12000 records, each from an ICU 
stay. The 12000 records are divided to three data sets 
equally. Four thousand records are used in training set A, 
and the rest form test sets B and C. The outcomes for the 
training set are available to us. We developed our 
algorithms based on the data set A. The data were 
collected from four types of ICUs: coronary care unit, 
cardiac surgery recovery unit, medical ICU and surgical 
ICU. All the ICU stays lasted for at least 48 hours. 

Six general descriptors are collected on admission. 
They are “RecordID (a unique integer for each ICU 
stay)”, “Age (years)”, “Gender (0: female, or 1: male)”, 
“Height (cm)”, “ICUType”, “Weight (kg)”. 37 other 
variables were collected once, more than once, or not at 
all in each record. In Figure 1, we plotted the numbers of 
occurrence of each variable in the training set A and the 
test set B.  
 
2.2. Missing data handling 

Up to 42 variables are available. Among them, some 
variables are very rarely collected. For example, the 
variables TropI (Troponin-I) and TropT (Troponin-T) 
never appeared at all. Those variables should be ignored 
during the feature extraction. Most variables are not 
collected in every ICU stay. For example, the variable HR 
(heart rate) is collected in 97% of the records; the variable 
Lactate is only collected in 55% of the records. For 
classification purpose, the feature space should be 
consistent for all the records. Thus it is necessary to 

handle the missing data properly. For example, for 
records where the variable Lactate is not collected, we 
should give the variable Lactate an artificial value.  
 

 

 
Figure 1.  Most frequent 18 variables (top) and least 
frequent 19 variables (bottom). Variables plotted in cyan 
are used in the SAPS. 

Our way to handle the missing data is based on the 
assumption that, if one variable is missing, doctors would 
consider that variable unrelated to the patient’s illness. 
Thus that missing variable should be in normal range. For 
example, if the variable Temp (Temperature, °C) is 
missing, it would be in the range of 36 to 38.4.  

 
2.3. Performance evaluation 

Two scores were defined to evaluate the algorithms. 
The first score is the minimum of the sensitivity and the 
precision. The sensitivity and precision are defined as 
below: 

 
sensitivity = 𝑇𝑃

𝑇𝑃+𝐹𝑁
, precision = TP

TP+FP
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where TP, FP, TN and FN respectively means “true 
positive”, “false positive”, “true negative” and “false 
negative”, and are as below: 

 
Table 1. Table of confusion. 

 

Outcome Observed 
Death Survivor 

Predicted Death TP FP 
Survivor FN TN 

 
The second score is based on a modification of 

the Hosmer-Lemeshow statistic and the lower this score, 
the better the algorithm. In this work, we focused our 
effort on the event 1 score.  
 
3.  Feature extraction 

After thorough investigation and tests, we have 
selected 26 features (Table 2). Those features were found 
to be most distinguishing for the hospital mortality. We 
computed the mean, minimum, maximum, last data point 
value and the trend estimation for all variables except the 
static variable of age, ICU type and gender, resulting in 
141 features. The trends of the time series variables are 
estimated using linear regression. For example, Figure 2 
shows the linear regression of the HR in one record, and 
the trend is estimated as the slope. Inspired by the 
physiological importance, the sum of urine over the 48 
hours is used as a feature. Also the ratio between the 
FiO2 and PaO2 is used as a feature too. 
 
Table 2. Best 26 features. 

 
Variable Feature Event 1 score 
GCS LastDataPoint 0.375 
GCS WeightedMean 0.33164 
GCS Max 0.31408 
HCO3 Min 0.30325 
Urine Sum 0.287 
GCS Slope 0.2852 
HCO3 Max 0.26592 
BUN Max 0.26354 
BUN LastDataPoint 0.26354 
HCO3 LastDataPoint 0.26256 
BUN Min 0.2599 
HCO3 WeightedMean 0.25632 
BUN WeightedMean 0.2471 
SysABP WeightedMean 0.24549 
WBC LastDataPoint 0.24368 
SysABP LastDataPoint 0.23944 
FiO2, PaO2 Ratio 0.22754 
WBC WeightedMean 0.22744 
Temp WeightedMean 0.21775 

Glucose Max 0.21732 
Na WeightedMean 0.21525 
Na Max 0.21342 
SysABPNISysABP Min 0.21261 
Age  0.2112 
Lactate LastDataPoint 0.21119 
Temp LastDataPoint 0.21078 
 

 
Figure 2. Trend estimation: the measurements were fitted 
to a linear line, and the slope of the line was used for the 
trend estimation  

    Each feature was independently used for the mortality 
prediction and the performance for each feature was 
evaluated using the event 1 score. The best individual 
feature was identified as the last data point value of the 
GCS which yielded an event 1 score of 0.375. A list of 
the best individual features is shown in Table 2. After 
finding the best individual features, we investigated the 
performances of different combinations. It was found 
that, the combination of the best 26 features gave the best 
performances in the event 1 score. 
 
4.  Classification  

4.1. Neural network 
  

During neural network training, the optimization could 
often be stuck in local minima and result in very poor 
classification accuracy. In this work, we used a “voting” 
strategy to overcome that problem. For each training set, 
we repeatedly train 100 neural networks; in prediction, 
the 100 neural networks each predict an intermediate 
probability for an input, and the final output is the 
average of the 100 intermediate probabilities. 
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4.2. Oversampling 
 
The training data set contains only 13.85% of its 

records as dead (positive) records. To expose the positive 
records more frequently to the training algorithm, we 
tried oversampling the positive records. That means we 
may input the same positive records to the neural network 
during training more than once.  

 
4.3. Fuzzy threshold 

 
The output of the neural network is a score between 0 

and 1. In this problem, the best threshold to differentiate 
the negative and positive records is typically smaller than 
0.5, and may fluctuate because of the number of voting 
classifiers used, the number of positive records 
oversampled, etc. During training, we are able to find out 
the optimal threshold, but the same threshold may not be 
optimal for test data set. To overcome this, we used a 
“fuzzy threshold” for test. For example, if it was found 
that the best threshold in training was 0.35, during test, 
we would determine all records with a score below 0.34 
as negative, all records with a score above 0.36 as 
positive, and would randomly guess the records with a 
score between 0.34 and 0.36. This approach was able to 
give a performance close to the optimal threshold.     

 
5.  Results 

The algorithms were trained and tested in the training 
set using the 5-fold cross validation. Each test was 
repeated for 5 trails to reduce the influence of the 
randomness. Different parameter settings were 
investigated thoroughly in order to find the optimal 
model.  

The following network architectures were tested: one-
layer neural network with 3 to 20 hidden neurons and 
two-layer network with 3 to 7 neurons in the first and 
second hidden layers respectively. It turned out that, a 
two-layer artificial neural network with fifteen neurons in 
the hidden layer gave the best performance. The 
hyperbolic tangent sigmoid transfer function was used in 
each layer. Also different training functions like the 
Bayesian regulation back-propagation, the Conjugate 
gradient back-propagation, Levenberg-Marquardt back-
propagation and so on. The Levenberg-Marquard back-
propagation algorithm was found to be the best. 

Also the number of positive records to oversample was 
adjusted. The final model oversampled 70% of the 
positive records and used a fuzzy threshold band of (0.35, 
0.37). On the training set, it gave an event 1 score of 
about 0.495 and an event 2 score of about 57 in 5-fold 
cross validation. On the test data set, an event 1 score of 
0.5088 and an event 2 score of 82.211 were obtained. 
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