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Abstract

Early detection ofventricular fibrillation (VF) and fast
ventricular tachycardia (VT) is crucial for the success of
the defibrillation therapy. A wide variety of detection al-
gorithms have been proposed based on temporal, spec-
tral, or complexity parameters extracted from the ECG.
However, these algorithms are constructed by considering
each parameter individually. This study aimed to analyze
the performance of combining previously defined ECG pa-
rameters for the detection of life-threatening arrhythmias
using support vector machines (SVM). A total of11 pa-
rameters have been computed, namely, TCI, STE, MEA,
CM, VFleak, M, A2, FM, MAV, PSR and HILB. We studied
two different binary detection scenarios: shockable (FV
plus TV) vs nonshockable arrhythmias, and VF vs nonVF
rhythms. We used the MITDB, the CUDB, and the VFDB
to evaluate our algorithms. Sensitivity and specificity anal-
ysis show that the combination of parameters with SVM
outperforms individual detection algorithms.

1. Introduction

Sudden cardiac arrest(SCA) is a major health problem
which accounts approximately for six millions deaths in
Europe and in the United States [1]. SCA is a sudden,
abrupt loss of heart function, most often caused by a rapid
ventricular tachycardia (VT) that quickly degenerates into
ventricular fibrillation (VF). Prompt detection of VT and
VF episodes is crucial to deliver an electric shock therapy
and in this way increase the probability of survival from
a SCA incident. This has impelled the development au-
tomated external defibrillators (AED) which analyzes the
surface electrocardiogram (ECG) signal and advise/deliver
and electric shock if either fast VT or VF are detected. Al-
though commercial AEDs have been extensively tested in-
silico and in clinical trials [2], their real detection capabil-
ities are still controversial [3].

Reliable detection of life-threatening arrhythmias,

though extensively studied during the last decades, re-
mains an open problem. A wide variety of detec-
tion algorithms have been developed based on tempo-
ral/morphological [4–8], spectral [9,10], or complexity pa-
rameters [11–14] extracted from the ECG. For each detec-
tor different separation scenarios have been considered [7],
such as VF vs nonVF rhythms, VF plus VT vs nonVTVF,
or VF vs VT, making it difficult to asses the real perfor-
mance of the proposed algorithms. When compared in a
standardized way [6], their performance is reduced from
the claimed values presented in the original studies. Be-
sides, the arrhythmia detection algorithms are constructed
by considering each parameter individually, however the
combination of ECG parameters have been suggested as a
useful approach to improve detection efficiency [15,16].

This study aimed to analyze the performance of com-
bining previously defined ECG parameters for the detec-
tion of life-threatening arrhythmias using support vector
machines (SVM). SVM are statistical learning algorithms
that have demonstrated an excellent performance in a num-
ber of classification problems [17]. We studied two differ-
ent binary detection scenarios: shockable (FV plus TV)
vs nonshockable arrhythmias, and VF vs nonVF rhythms.
We used the MIT-BIH Arrhythmia Database (MITDB)
[18], the Creighton University Ventricular Tachycardia
Database (CUDB) [19], and the MIT-BIH Malignant Ven-
tricular Arrhythmia Database (VFDB) [20] to evaluate our
algorithms.

2. Materials and methods

2.1. ECG collection

We used thecomplete ECG signal recording files from
the MITDB, the CUDB and the VFDB. The MITDB con-
tains48 files of slightly over30 min length,2 channels per
file, sampled at360 Hz. The MITDB includes15 rhythm
labels differentiating between VT, ventricular fluter (VFL),
normal sinus rhythm (NSR), among other rhythms. The
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CUDB contains35 records of8 min length from patients
who experienced episodes of sustained VT, VFL and VF.
Each record is sampled at250 Hz and includes only two
rhythm annotations: VF and nonVF. The VFDB contains
22 files of 30 min length,2 channels per file, sampled at
250 Hz. As the CUDB, the VFDB includes patients who
experienced episodes of sustained VT, VFL and VF. In this
database, annotation labels contain15 different rhythms
such as VT, VF, VFL, and NSR.

2.2. Preprocessing

All ECG signalswere preprocessed using the filtering
process proposed in [6] which works in four successive
steps: i) mean subtraction, ii) five-order moving average
filtering, iii) high pass filtering withfc = 1 Hz (drift
suppression), andiv) low-pass Butterworth filtering with
fc = 30 Hz. Then, noise,asystole and low-quality episode
segments were removed according to the corresponding
annotation labels. Finally, only the first channel of the
MITDB and the VFDB has been considered to avoid de-
pendency of samples during the learning process.

2.3. ECG parameters

Each preprocessed ECGsignal is divided in non-
overlapping 8-seconds segments. This window length has
demonstrated to give the best performance in a number of
investigated detection algorithms [6]. For each 8-s seg-
ment, a set of 11 parameters were computed from the
following existing methods: Threshold Crossing Inter-
val (TCI) [4], Standard Exponential (STE) [6], Modified
Exponential (MEA) [6], Complexity Measurement (CM)
[11], VF filter (VFleak) [10], Spectral Algorithm (M and
A2 parameters) [9], Median Frequency (FM) [21], Mean
Absolute Value (MAV) [7], Phase Space Reconstruction
(PSR) [12] and Hilbert Transform (HILB) [13]. A detailed
description of each parameter can be found in the original
manuscripts. For an 8-s segment we assigned the labels VF
(including VFL), VT, or other rhythm (O) according to the
mode of the annotation samples within the analyzed seg-
ment. Note that we used rhythm annotations, and therefore
all samples contained in a VT/VF episode are considered
as VT/VF respectively.

The parameterization of ECG signal segments resulted
in a dataset of binary labeled data{(x1, y1), . . . , (xN , yN )},
wherexi ∈ Rd with d = 11 the numberof computed pa-
rameters,N = 17857 the number of 8-s segments, and
labelsyi ∈ {−1, +1}. Two binary detection scenarios
were considered: VF episodes vs nonVF, and shockable
(VF plus VT) vs nonshockable rhythms. Both constitute
unbalanced datasets with the following prior probabilities:
VF vs nonVF, (p+1 = 95.2%, p−1 = 4.8%); shockablevs
nonshockable,(p+1 = 91.5%, p−1 = 8.5%).

2.4. SVM classifiers

In recent years,SVM classification algorithms have
been used in a wide number of practical applications
[17]. SVM binary classifiers are sampled-based sta-
tistical learning algorithms which construct a maximum
margin separating hyperplane. Given a training dataset
{(x1, y1), . . . , (xN , yN )}, where xi ∈ Rd and yi ∈
{−1, +1}, SVM solves a quadratic optimization problem:

min
x,b,ξi

1
2
‖w‖2 + C

N∑

i=1

ξi, (1)

s.to yi (〈φ(xi),w〉 + b) − 1 + ξi ≥ 0,

ξi ≥ 0, i = 1, . . . , N,

whereφ(xi) is a nonlineartransformation that maps train-
ing data to a higher dimensional space,ξi represent the
losses, andC is a regularization parameter that represents
a trade-off between margin and losses. By using Lagrange
multipliers, (1) can be rewritten into its dual form, and
then, the problem consists of solving

max
αi

N∑

i=1

αi −
1
2

N∑

i,j=1

αiyiαjyjK(xi,xj), (2)

constrained to0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0, whereαi

are the Lagrangemultipliers corresponding to primal con-
straints. K(xi,xj) = 〈φ(xi), φ(xj)〉 is the kernel func-
tion, which allows us to calculate the dot product of pairs
of vectors transformed byφ(∙) without explicitly knowing
neither the nonlinear mapping nor the higher dimensional
space. We used the Gaussian kernel in our experiments:

K(xi,xj) = exp
(
−γ‖xi − xj‖

2
)
. (3)

After obtaining theLagrange multipliers, the SVM clas-
sification for a new samplex is simply given by

y = sgn

(
N∑

i=1

αiyiK(xi,x) + b

)

. (4)

The free parametersof the SVM modelγ andC have
to be settled a priori. Methods such as cross-validation or
bootstrap resampling can be used for this purpose.

3. Results

First, we testthe discrimination ability of the computed
parameters by analyzing the receiver operating characteris-
tics (ROC) curve. Figure 1 shows the ROC curves obtained
using the complete database. The performance of the de-
tection parameters were assessed in terms of the area under
the ROC curve (AUC) and evaluating the sensitivity (SE),
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Figure 1. ROC curves for the (a) VF vs nonVF problem, and (b) shockable vs nonshockable scenario.

i.e the proportion of correctly detected VF/Shockable ob-
servations, and the specificity (SP), i.e the proportion of
correctly identified nonFV/nonShockable samples. The re-
sults of the ROC analysis are presented in Table 1. In all
cases, the best performance corresponds to VFleak param-
eter, which is consistent with previous studies [2, 6]. The
performance of PSR and HILB differs from the original
investigations [12,13], but it is similar to other studies [5].

Table 1. ROC analysis for the computed parameters using
the complete dataset

VF vs nonVF Shock vs nonShock
Param AUC SEa SPb AUC SEa SPb

TCI 0.89 49 68 0.92 65 76
STE 0.83 48 47 0.88 62 58
MEA 0.92 70 83 0.95 80 91
CM 0.80 23 47 0.78 25 37
VFleak 0.95 73 89 0.97 82 93
A2 0.88 34 74 0.90 51 72
M 0.91 71 72 0.95 81 82
FM 0.84 56 41 0.85 56 53
MAV 0.72 24 18 0.79 43 26
PSR 0.92 74 85 0.95 85 92
HILB 0.92 75 80 0.94 76 86
a Sensitivity(%) for a95% specificity.
b Specificity(%) for a90% sensitivity.

3.1. SVM performance

The parametrization datasetof the ECG signal was used
as the input to the SVM detector. A random subset of the
input space (70%) was used for training while the remain-
ing data was used as test set. Given that the datasets were
unbalanced, we used the balanced error rate (BER) [22] as
metric to set the free parameters (C,γ) of the SVM by fol-
lowing a 5-fold cross validation strategy. The performance

of the SVM detector was assessed using the ROC analysis
in terms of SE, SP and AUC, and benchmarked against the
VFleak parameter, as presented in Figure 2 and Table 2. In
both scenarios under analysis, the SVM detector outper-
forms individual parameters in terms in SE and SP. This
difference is enhanced in the case of shockable rhythms.

Table 2. ROC analysis of the SVM detector (test set)

VF vs nonVF Shock vs nonShock
AUC SEa SPb AUC SEa SPb

SVM 0.96 81 85 0.99 96 99
VFleak 0.95 73 89 0.97 82 93
a Sensitivity(%) for a95% specificity.
b Specificity(%) for a90% sensitivity.

4. Discussion andconclusions

The overall performance of the computed parameters
are in accordance with previous studies [5, 6], in which
VFleak, HILB and PSR provide the best detection results.
Differences in SE and SP values can be attributed to the
ECG databases. Here we included the VFDB whereas the
American Heart Association database is not used.

In this work, a novel detection detection algorithm has
been presented that combines ECG parameters with SVM
to identify VF/shockable arrhythmias, thus showing that
the use of machine-learning techniques can improve the
efficiency for the detection of life-threatening arrhythmias.
In these detection schemes, where the number of ECG pa-
rameters can be easily increased, it would be of interest
to incorporate efficient feature selection techniques for as-
sessing the discriminatory properties of the selected vari-
ables. This, besides of improving the accuracy of VF de-
tectors, might help researchers to provide a better under-
standing of the underlaying mechanisms responsible for
the generation of life-threatening arrhythmias.
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Figure 2. ROC curves for the SVM detector vs VFleak
parameter.
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