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Abstract

As cardiacmurmurs do not generally appear in every
area of auscultation, this paper presents an effective ap-
proach for cardiac murmur detection based on stochas-
tic analysis of acoustic features derived from Empirical
Mode Decomposition (EMD) and Hilbert-Huang Trans-
form (HHT) of phonocardiographic (PCG) signals made
up by the 4-Standard Auscultation Areas (SAA). The 4-
SAA PCG database belongs to the National University of
Colombia. Mel-Frequency Cepstral Coefficients (MFCC)
and statistical moments of HHT were estimated over EMD
components. An ergodic HMM was applied on the fea-
ture space, randomly initialized and trained by expectation
maximization with a convergence at 10e-6 and a maximum
iteration number of 1000. Global classification results
for 4-SAA were around 98.7% with satisfactory sensitiv-
ity and specificity results, using a 30-fold cross-validation
procedure (70/30 split). The representation capability of
the EMD technique applied to 4-SAA PCG signals and
stochastic analysis of acoustic features offered a high per-
formance to detect cardiac murmurs.

1. Introduction

Cardiac murmurs aregenerated when the blood flow be-
comes turbulent near damaged valves [1]. Heart mechan-
ical activity can be appraised by auscultation recordings,
i.e., phonocardiographic (PCG) signals, which is an in-
expensive and non-invasive clinical procedure [2]. These
heart sounds are commonly analyzed from 4-Standard
Auscultation Areas (4-SAA), one for each cardiac valve, in
order to thoroughly examine the state of the cardiac valves,
as there are invisible murmurs for systems based on auscul-
tation signals acquired from a single area [3].

Initially, taking advantage of the morphological changes
in the signal shape caused by heart murmurs, differ-
ent approaches based on energy and temporal measure-
ments were proposed [4, 5]. However, cardiac murmurs

have a nonstationary nature and exhibit sudden frequency
changes and transients [2, 6]. Other studies have consid-
ered the nonlinear nature of physiological signals, which
has promoted the analysis of fractal features and the op-
timization of the embedding parameters in order to im-
prove the training and classification stages [5, 7, 8], al-
though the increment in processing time becomes a big
problem for real-time applications. On the other hand,
several approaches based on wavelets have been proposed
taking into account the time-frequency disturbances asso-
ciated with cardiac murmurs [9]. However, in contrast to
approaches based on wavelets, which perform the analysis
by projecting the signal under consideration onto a num-
ber of predefined basis vectors, other decomposition meth-
ods, such as Empirical Mode Decomposition (EMD) and
Hilbert-Huang Transform (HHT), express the signal as an
expansion of basis functions which are signal-dependent,
and are estimated via an iterative procedure called sifting
[10]. For example, in [11], an approach based on EMD was
presented, where fetal heart sounds were extracted from a
recorded single channel abdominal PCG [11]. Another in-
teresting area is the acoustical disturbances caused by heart
murmurs, which can be analyzed using Mel-Frequency
Cepstral Coefficients (MFCC)[12, 13], but these proce-
dures are very sensitive to artifacts or noises frequently in-
volved in the acquisition stage [2]. For this reason, the
combination between MFCC and statistical moments of
HHT with appropriate EMD components would be suit-
able. Additionally, the inclusion of stochastic models,
such as Hidden Markov Models (HMM), have success-
fully complemented procedures for cardiac murmur detec-
tion [14]. However, all these studies have been developed
using a single auscultation signal, and fail when a murmur
is missing or attenuated in the standard single derivation.

In this study, a classification approach based on the com-
bination of HMM-MFCC-HHT from different EMD com-
ponents of 4-SAA PCG signals is presented, in order to
provide an objective and accurate mechanism for more re-
liable heart murmur diagnosis.
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2. Materials and methods

2.1. Database

The database ismade up of 143 de-identified adult sub-
jects, who gave their formal consent, and underwent a
medical examination with the approval of the ethical com-
mittee. The valve lesion severity was evaluated by cardi-
ologists according to a clinical routine. 55 patients were
labeled as normal, while 88 had evidence of cardiac mur-
murs (aortic stenosis, mitral regurgitation, etc). From each
patient, 8 recordings were recorded according to the four
standard auscultation areas (4-SAA), i.e., mitral, tricuspid,
aortic and pulmonic areas, in the phase of post-expiratory
and post-inspiratory apnea. Each recording lasts 8s and
was obtained with the patient standing in dorsal decu-
bitus position. The signals were acquired at 44.1kHz
with 16-bits per sample with an electronic stethoscope
(WelchAllynr Meditron model). Finally, 400 individual
beats were chosen, 180 normal and 180 with evidence of
cardiac murmur. The individual beats picked out were the
best from each cardiac sound signal, according to a visual
and audible inspection by a cardiologists.

2.2. Theoreticalbackground

A. Empirical ModeDecomposition (EMD)– This method,
reported in [15], adaptively decomposes a multi-
component signalx(t) into a numberL of Intrinsic Mode
Functions (IMFs),h(i)(t), 1≤ i ≤ L,

x(t) =
L

∑
i=1

h(i)(t)+d(t) (1)

whered(t) is a remainderwhich is a non zero-mean slowly
varying function with only few extrema. Each one of the
IMFs, say theith oneh(i)(t), is estimated withthe aid of
an iterative process, called sifting, applied to the residual
multi-component signal

x(i)(t) =

{
x(t) , i = 1

x(t)−∑i−1
j=1h( j)(t) , i ≥ 2

(2)

According to this,during the(n+ 1)th sifting iteration,

the temporary IMF estimateh(i)
n (t) is improved accord-

ing to the following steps [10]:1) Find the local maxima

and minima ofh(i)
n (t). 2) Interpolate, using naturalcubic

splines, along the points ofh(i)
n (t), previously estimated,in

order to form an upper and a lower envelope.3) Compute
the mean of the two envelopes.4) Obtain the refined esti-

mateh(i)
n+1(t) of the IMF by subtracting the mean found in

the previous step from the current IMF estimateh(i)
n (t). 5)

Proceed fromstep1 again unless a stopping criterion has

been fulfilled. For the first iteration,x(i)(t) is used astem-
porary IMF estimateh1(t).

B. Hilbert-Huang Transform (HHT)– Instantaneous fre-
quency and its magnitude of heart sound signals can be
extracted by HHT, which is used to adaptively decompose
non-stationary and nonlinear signals and extract the instan-
taneous frequency. In general, HHT consists of two steps:
Empirical Mode Decomposition (EMD) and Hilbert trans-
form. EMD is used to adaptively decompose the signal
into a series of intrinsic mode functions (IMFs). Hilbert
transform is then carried out to acquire the instantaneous
frequency and amplitude of each IMF and constitute the
time-frequency-energy distribution in the Hilbert-Huang
spectrum of the signal [16].

C. Mel-Frequency Cepstral Coefficients (MFCC)– Psy-
chophysical studies have shown that human perception of
the frequency content of audio sounds does not follow a
linear scale but as a Mel-warped frequency, which spaces
linearly for low-frequency contents and logarithmical at
high frequencies [2]. So, MFCC are a family of param-
eters that are estimated as [17]:

c[p] =
M−1

∑
m=0

XF [m]cos(π p(m−0.5)/M) , 0≤ p≤ M (3)

whereXF [m] = ln
(

∑N−1
i=0 |X[i]|2Hm[i]

)
. Here,X[i] is the

Fourier transform of an input random sequencex[n] and
Hm[i] is a triangularband-pass filter with central frequency
in f [m]. Thus, in order to simplify the signal spectrum
without any significant loss of data, a set ofM triangular
band-pass filters must be used, which are nonuniform in
the original spectrum and uniformly distributed at the Mel-
warped spectrum. Each filter is multiplied by the spectrum
so that only a single value of magnitude is returned per fil-
ter.

D. Hidden Markov Models (HMM)– HMM is an exten-
sion of Markov chains, where each state does not corre-
spond to an observable event, but is connected to a group
of probability distributions of the state. In some applica-
tions, the states may have a certain physical meaning at-
tached to the states or the sets of states [18, 19]. There
are several well-known training criteria, such as Maximum
Likelihood Estimation (MLE), Maximum Mutual Infor-
mation (MMI), among others, however, this study has fo-
cused on applications based on the MLE criterion, given
its good performance in previous studies [20]. LetX ={

ϕϕϕnϕr
r : r = 1, . . .,R

}
a training set ofRsamples, with cat-

egoriesC =
{

cccnϕr
r : r = 1, . . .,R

}
for M different classes,

i.e., cccr ∈ {cm : m= 1, . .. ,M}. Also, each sampleϕϕϕnϕr
r is

represented byasequence of feature vectors of lengthnϕr ,
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so, ϕϕϕnϕr
r = {ϕr,t : t = 1, . . .,nϕr}. The total setof param-

eters of the HMM is denoted byΘΘΘ and is composed of
M models, i.e.,ΘΘΘ = {λm}, whereλm denotes the setof
parameters of the HMM corresponding to classcm. The
training procedure basedon MLE criterion is carried out
taking into account the following objective function:

fMLE(ΘΘΘ) =
R

∑
r=1

log(P(ϕϕϕnϕr
r |cccr)) (4)

The optimization of(4) is achieved by adjusting the pa-
rameters of each model separately, relying on the training
observation data, so that expression (4) gets a maximum
value. This procedure includes the Expectation Maximiza-
tion (EM) algorithm which is a well-known method for
finding the maximum-likelihood estimate of the parame-
ters of an underlying distribution from a data set when the
data are incomplete or have hidden parameters [21].

2.3. Proposedprocedure

PCG Signals - 55
normal recordings and 88 with
murmurs (4-SAA: pulmonic,
mitral, aortic and tricuspid)

Resampling and normalization.
Segmentation - 200 normal
heartbeats and 200 with
murmurs for each SAA

MFCC features
Statistical moments of HHT

HMM - Training and Cross-
validation

:
Signal components and different
combinations

Figure 1. Blockdiagram – general proposed procedure

According to Figure 1, the 4-SAA PCG recordings were
resampled to 4410Hz by applying a FIR low-pass anti-
aliasing filter. Next, the signals were normalized in [-1,
1]. Features derived from the acoustic and time-frequency
analysis were estimated from different combinations of
signal components obtained by the EMD technique. The
IMFs were estimated using the sifting algorithm, with the
following parameters: resolution 40dB, residual energy
40 dB and the gradient step size 0.01. Particularly, a Mel-
scaled filter bank was used to calculate the Mel-warped
spectrum, so the first 8 and 12 MFCC were estimated using
24 Hamming shaped filters and a sliding hamming window
(50% overlap) over different combinations of EMD com-
ponents derived from the whole beats. Additionally, the
first 10 statistical moments in function of the instant fre-
quency and instant amplitude obtained by HHT were also
considered, using the same combinations of EMD compo-
nents. The representation space was normalized in order

to improve the classification performance. The stochastic
analysis of the feature space in order to recognize the beat
samples was carried out by a classifier type ergodic HMM
initialized with a random parameter vector. The training
stage was developed using an EM algorithm in order to es-
timate the maximum likelihood parameters (i.e., MLE cri-
terion) with a convergence at 10e-6 and a maximum itera-
tion number of 1000. The classification stage was carried
out by a 30-fold cross-validation procedure using a 70/30
split, where consistency and representation capability of
the feature space were analyzed.

3. Results anddiscussion

Table 1 presentsthe classification accuracy of a cardiac
murmur detection system for 4-SAA PCG signals based
on HMM, where sets of 8 and 12 MFCC were tested over
two sets of constructions based on IMFs (EMD compo-
nents), which were considered after making several dif-
ferent combinations: IMF-C1={3,5,7} and IMF-C2=
{1,3,5,7}. Additionally, the first 10 statistical moments
of HHT were included in these feature sets. These results
show that MFCC 9, 10, 11 and 12 of the IMF 1 contain
relevant acoustical information related to heart valve dam-
ages. Table 2 presents statistical measures of the HMM

Table 1. HMM with MFCC-HHT-EMD features

8-MFCC 8-MFCC 12-MFCC 12-MFCC
IMF-C1 IMF-C2 IMF-C1 IMF-C2

Accuracy (%) 95±2.1 96±2 93.1±3.7 98.7±1.2

classification performance forMFCC-HHT features over
EMD components IMF-C2, considering each auscultation
area. Finally, this classification approach is compared with

Table 2. Statistical performance by auscultation area

Area Accuracy(%) Sensitivity (%) Specificity (%)
Aortic 98.8±1.2 99.2±0.5 98.3±1.5

Pulmonic 97.5±1.7 98.3±0.3 96.7±1.4
Mitral 99.2±0.8 100±0.0 98.3±0.9

Tricuspid 99.2±0.8 99.2±0.7 99.1±0.9
Mean 98.7 99.2 98.1

other HMM-based classifierstrained with features of sin-
gle auscultation signals (see Table 3), where a greater per-
formance is evidenced.

Table 3. Comparison with other approaches

Approach Accuracy (%)
DHMM [19] 96.3

HMM-MFCC [14] 95.4
CHMM-Wavelets [18] 94.3

HMM-MFCC-HHT-EMD (this work) 98.7
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4. Conclusion

An objective and accurate mechanism of 4-SAA PCG
signal classification for a more reliable cardiac murmur
detection, in terms of sensitivity and specificity, was ob-
tained. The representation capability of the EMD tech-
nique applied to 4-SAA PCG signals and stochastic analy-
sis performed by an ergodic HMM of acoustic features de-
rived from MFCC and statistical moments of HHT offered
a high performance in the detection of heart murmurs. Al-
though this stochastic classifier was demonstrated to be
highly dependent on the signal representation and parame-
ter initialization for the model optimization. The combina-
tion of different EMD components enhances the acoustical
content associated with cardiac murmurs and reduces the
acoustical components related to the normal heart sounds
or noises included in the acquisition stage.
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