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Abstract

When recording an electrocardiogram (ECG) under the
presence of the static magnetic field of a magnetic reso-
nance (MR) scanner, the ECG signal is disturbing by the
magnetohydrodynamic (MHD) effect. Due to the MHD ef-
fect, the diagnostic information contained in the ECG sig-
nal is not accessible.

This article copes with this problem by applying differ-
ent Independent Component Analysis (ICA) algorithms to
ECG signals corrupted by a simulated and real MHD ef-
fect.

The applied ICA methods lead to significant errors in the
resulting, filtered ECGs. Especially for the ECG signals
with real MHD effect, a separation of the ECG and MHD
components was not possible.

1. Introduction

Besides its usagein clinical diagnostics, Magnetic Reso-
nance Imaging (MRI) is increasingly used for minimal in-
vasive interventions. For MR guided applications like elec-
trophysiological studies and catheter ablations, the avail-
ability of a diagnostic electrocardiogram (ECG) could im-
prove diagnostics and increase patient safety.

Due to the hostile MRI environment with its time-
varying radio-frequency and switched gradient magnetic
fields and the static magnetic field, it is not possible to
record a fully diagnostic ECG inside the MR scanner. The
most disturbing artefact which is caused by the MR scan-
ner’s static magnetic field is the magnetohydrodynamic
(MHD) effect. The MHD effect leads to an artefact sig-
nal which mainly superimposes the ST segment and the
T wave. Simulation studies of the MHD effect give an esti-
mate on how the ECG is affected by the MHD effect [1,2].
Independent Component Analysis (ICA) was previously
successfully applied to filter simulated MHD signals from
the ECG [3].

In this work, different ICA algorithms are applied to

ECG signals containing simulated and real MHD signals
in order to eliminate the MHD components and to obtain
an MHD-free ECG signal. The accuracy of clinically rel-
evant parameters such as elevation of the ST segment and
the T wave’s end are estimated.

2. Theory

2.1. Problem formulation

When the ECGis measured under the presence of the MR
scanner’s static magnetic fieldB0, the superposition oftwo
signal sources, namely the ECG signal and the MHD sig-
nal, is measured:

ECGMR = ECG + MHD (1)

The ECG and the MHD signals have their origin in two
physically different sources with the ECG representing the
electrical activity of the myocardium. The source for the
MHD effect is the blood flow under the presence of the
static magnetic field which results in the induction of a
Hall voltage [1,4]. Since the blood flow velocity is highest
during the cardiac output phase, the MHD effect mainly
affects the ST segment and the T wave [5]. The ECG and
the MHD signals overlap in time and frequency and are
highly correlated.

2.2. Independent componentanalysis

ICA is a statistical technique and is applied to multidi-
mensional data in order to estimate the underlying signal
components. It assumes that a set of observed variablesx
originates from a stationary linear mixing process of a set
of statistically independent, non-gaussian source signalss.
ICA algorithms search for a set of base functions with non-
Gaussian distribution. It was shown that the ECG signal
exhibits a non-Gaussian distribution [6]. The observed sig-
nalsx and the source signalss are related by the so-called
mixing matrixA:
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x = As (2)

To separateall source signals, the number of observations
has to be equal or larger than the number of sources. The
aim of the ICA is to find the mixing matrixA and the
demixing matrixW so that:

ŝ = Wx (3)

where ŝ are the estimated source signals. Several algo-
rithms have been proposed to solve this problem. Here, the
FastICA [7] and the JADE algorithm [8], which have been
successfully applied to ECG signals before[9], are used.

For the given application, the vectorx contains the
measured ECG signals with either simulated (xD1) or
real (xD2) MHD effect. The estimated source signalsŝ are
analysed and those signalsŝwhich contain the MHD effect
are eliminated resulting in a filtered source vectorŝfilt . The
filtered measurement signalsx̂filt are then given as:

x̂filt = Aŝfilt (4)

3. Material and methods

3.1. ECG and blood flow data acquisition

The ECG signalswere recorded on one healthy male
volunteer aged 28 in a 3 T MR scanner (Magnetom Ve-
rio, Siemens) using a standard 12-lead Holter ECG (Car-
dioMem CM3000-12, GETEMED) with a sampling rate
of 1024 Hz, a resolution of 12 Bit and an analogue band-
width rangin from 0.05 Hz to 100 Hz.

Aortic blood flow was measured using a phase con-
trast MRI sequence which is based on a triggered and
RF spoiled gradient echo sequence [10] with TR=61.2 ms,
TE=2.6 ms and a flip angle of 7◦. The measurement has
a temporal resolution of 61.2 ms covering a total measure-
ment period of 887.4 ms in 15 timeframes. Post-processing
of the data included noise masking, anti-aliasing and eddy
current correction [11]. Flow calculations were performed
using the software described in [12].Figure 1 shows the
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Figure 1. Estimatedcardiac output closely behind the aor-
tic valve using a 4D phase contrast MRI sequence.
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Figure 2. (a),(b): ECGs recorded outside the MR scanner
(grey) and superposition with the simulated MHD signal
(black). (c), (d): ECGs recorded inside the MR scanner.

volumetric blood flow rate in the aorta during one cardiac
cycle. The given blood flow rate is etimated by averaging
the blood flow through a cross sectional slice of the aorta
closely behind the aortic valve. The estimated flow signal
is used for the simulation of the MHD effect explained in
Section 3.2.

3.2. ECGs withsimulated MHD effect

The ECG signalsrecorded outside the MR scanner and the
volumetric blood flow rate signal shown in Fig. 1 were
mixed using a linear and stationary mixing model proposed
in [2]:

Li(B) = Li(B = 0) + αiBQ [mV ] (5)

whereLi is the ith ECG lead,B the magneticflux den-
sity of the MR scanner,αi the mixing coefficient for leadi
andQ the flux of blood given incm3/s. The proposed mix-
ing was inspired from a bidomain simulation model [2].
The mixing coefficients used in this work were derived
from the relative amplitudes of the real MHD signals of
each lead observed during the ECG measurements inside
the MR scanner and are given in Table 1. Examples for
ECG signals with simulated MHD effect (xD1) are shown
in Figs. 2(a) and 2(b).

3.3. ECGs withreal MHD effect

Two leadsof the ECG datasetxD2 recorded inside the
MR scanner in a feet first position are shown in Figs. 2(c)
and 2(d). Compared to the simulated signal described
in 3.2 and shown in Figs. 2(a) and 2(b), the scaling of
the MHD effect in xD2 showsa non-linear mixing be-
haviour for the different ECG leads and more oscillations
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Table 1. Mixingcoefficientsαi in 1/mm for all 12 ECG
leadsL1 - L12.

I (L1): II (L 2): III (L 3): aVR (L4):
0.95∙10−3 0.55∙10−3 -1.4∙10−3 -0.7∙10−3

aVL (L5): aVF (L6): V1 (L7): V2 (L8):
1∙10−3 -1.05∙10−3 0.5∙10−3 0.25∙10−3

V3 (L9): V4 (L10): V5 (L11): V6 (L12):
-0.43∙10−3 -0.55∙10−3 -0.6∙10−3 -0.75∙10−3

Figure 3. Mixingof ECG and MHD signal, separation of
ICs containing MHD effect and back transformation.

with higher frequencies. A more detailed description of
the ECG signals with real MHD effect is given in [5].

3.4. Methods

Preprocessing:Baselinewander was eliminated from the
ECG signals using a cubic spline approach1 and the DC
componentwas removed from all leads. To increase the
performance of the subsequent processing steps, the ECG
signal was downsampled to 256 Hz.

Source classification:The application of the ICA algo-
rithms to the disturbed ECG signalsx leads to a set of
base functions, namely theindependent components(ICs)
or source signalŝs. The general scheme for estimating the
ICs which mainly contain the ECG signal (ŝECG) is shown
in Fig. 3. The MHD effect inx was attenuated by using
a high-pass filter in order to apply a QRS detector1. The
QRS detector was also applied to the estimated source sig-
nals ŝ. If the positions and numbers of QRS complexes
from x coincide with those found in a component ofŝ,
then this component was assumed to be dominated by the
ECG signal. For the datasetxD1, an additional classifica-
tion of theŝMHD ICs wasperformed by correlatinĝsD1 with
the knownMHD signal used for the simulation. This au-
tomated procedure was followed by a manual verification.
All source signalŝsMHD and all sourceŝsE+M containing ECG
and MHD components were eliminated. The remaining
sourceŝsfilt consisting of eitherECG signal sourceŝsECG or
of non-identifiable sourceŝsnID were keptto estimate the
filtered measurement signalx̂filt .

1http://alum.mit.edu/www/gari/CODE/ECGtools/

3.5. Quality assessment

The quality ofthe filtered signalŝxfilt depends on theICA’s
ability to separate the ECG sourcesŝECG from the MHD
sourceŝsMHD. The quality of̂xfilt decreases if oneor more
ICs in ŝ contain ECG and MHD signals (ŝE+M) at the same
time. Hence, the number of ICs identified asŝECG, ŝMHD,
ŝE+M andŝnID is given.

For the reconstructed, filtered signalsx̂filt , the mean ab-
solutedifferential error in the ST segment was measured
against a clean reference ECG signal which was recorded
outside the MR scanner. The ST segment is defined as a
section of 20 ms length starting fromJ point+80 ms. The
end of the T waves in̂xfilt and a cleanreference ECG were
annotated by a trained physician.

4. Results

4.1. Source classification

ECGs with simulatedMHD effect: Both ICA algorithms
identified twelve sourceŝsD1. Eight sources wereclas-
sified as ŝECG due to thepresence of QRS complexes.
Two sources were classified asŝMHD. The remaining two
sources were manually classified either asŝnID or asŝE+M.
Examples for ICsclassified aŝsECG and ŝMHD are given in
Figs. 4(a) and 4(b).

ECG with real MHD effect:For the ECG signal with
real MHD effect, twelve ICŝsD2 were obtained fromboth
ICA methods. Two sources were classified asŝECG due to
a dominatingQRS complex. Six sources were classified
as ŝE+M. One source was classified aŝsMHD due to adomi-
nating MHD effect. Remaining ICs were classified asŝnID.
Examples are given in Figs. 4(e) and 4(f).

4.2. Signal reconstruction and quality as-
sessment

ECGs with simulatedMHD effect: Sources classified
as ŝMHD were removed and the remaining sourcesŝD1,filt
were used toreconstruct x̂D1,filt shown in Figs. 4(c)
and 4(d). The error in the ST segment exceeds 0.1 mV in
all leads. In leads II and V6, the end of the T wave could
be estimated with errors below 30 ms.

ECG with real MHD effect: Examples for the re-
constructed ECG signalŝxD2,filt are shownin Fig. 4(g)
and 4(h). The error in the ST segment exceeds 0.1 mV
in all leads with maximum errors up to 0.8 mV. The anno-
tation of the T wave’s end was not possible.

5. Summaryand conclusion

The applicationof ICA to ECG signals with an artifi-
cial MHD effect gave promising results in previous works
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Figure 4. Simulated dataset.(a),(b): ICs obtained from
FastICA. (c), (d): Clean ECG (gray) and̂xD1,filt (black).
Real dataset.(e),(f): ICsobtained from FastICA. (g), (h):
Clean ECG (gray) and̂xD2,filt (black).

since a linearmixing model was assumed [3]. The aim of
this work was to apply ICA methods to a simulated dataset
based on a linear mixing model and to ECG signals with
real MHD effect.

The FastICA and JADE algorithm lead to similar results
for both datasets. For the simulated datasetxD1, several
ŝECG andŝMHD sources were classifieddue to the linear mix-
ing model. For the real datasetxD2, most of theestimated
sourceŝsD2 contain a mixtureof ECG and MHD compo-
nents leading to diagnostically relevant errors in the fil-
tered signalŝxD2,filt. A manual classificationof the esti-
mated source signals could not overcome this limitation.

In conclusion it can be stated that the applied ICA meth-
ods are inappropriate for separating the real MHD effect
from the ECG signal since the unrealistic assumption of
a linear and stationary mixing model - as applied for the
simulated dataset - does not hold for the real dataset.
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