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Abstract

Arrhythmic Sudden Cardiac Death (SCD) is still a ma-
jor clinical challenge even though much research has been
done in the field. Machine learning techniques give a
powerful tool for stratifying arrhythmic risk. We ana-
lyzed 40 Holter recordings from heart failure patients, 20
of which were characterized as high arrhythmia risk after
16 months follow up. The two groups (high and low risk)
were not statistically different in basic clinical character-
istics. We performed windowed analysis and computed 25
Heart Rate Variability (HRV) indices. We fed these in-
dices as input to two classifiers: Support Vector Machines
(SVM) and Random Forests (RF). The classification results
showed that the automatic classification of the two groups
of subjects is possible.

1. Introduction

Today, heart problems have become the most frequent
cause of death in the western world. The number of sudden
cardiac deaths in the United States is estimated between
200.000 and 500.000 per year, with the 50% to 70% being
due to mechanisms related to arrhythmias [1]. Even though
much research has been done in the field, risk stratification
of arrhythmic SCD is a major clinical challenge [2].

The research in the field of heart rate variability has been
very active the past decades. Today the research in the field
is still active, with many new interesting papers appearing
every day. For the analysis of HRV, a large number of HRV
measure has been proposed and used. Almost two decades
ago, a review on heart rate variability summarizing the
knowledge in the field and suggesting guidelines for HRV
analysis was published [3]. Since then many other met-
rics has been proposed and reviews in the field have been
published including [4, 5].

The crucial question which HRV measure to use has not
been answered yet and we do not think it is possible to be

answered, at least in the near future. Each measure extracts
different information and all this information must be com-
bined and summarized. However, this is an especially dif-
ficult task, since the information can be sometimes huge,
but most important we are not yet in the position to de-
scribe the rules and propose procedures.

One solution to the problem, the most realistic up to
date, is to use machine learning techniques in order to auto-
matically combine the information extracted from the HRV
methods so that inherent and not well described relations
hidden in the available information to be discovered and
exploited.

In this paper we study the arrhythmic sudden cardiac
death in heart failure patients using machine learning tech-
niques. We analyzed 40 Holter recordings from heart fail-
ure patients. The half of them (20 subjects) were character-
ized as high arrhythmia risk after 16 months of follow up.
The rest (20 subjects) were characterized as low arrhyth-
mia risk. The two groups were not statistically different in
basic clinical characteristics.

We performed windowed analysis and computed 25
heart rate variability indices. We used these data as input
to a support vector machine and a random forest classi-
fier. The two classifiers achieved a high level of accuracy
showing that the automatic classification of high and low
risk patients is possible.

2. Classification methods

2.1. Support vector machines

If two sets can be linearly separated there exists a linear
function of the form:

f(x) = wTx + b (1)

such that yif(xi) ≥ 0, or f(xi) ≥ 0 for yi = +1 and
f(xi) < 0 for yi = −1. Vector w and scalar b represent
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the hyperplane f(x) = wTx + b = 0 separating the two
classes.

Since there are more than one hyperplane which can
separate the two classes, the SVM classifier selects the hy-
perplane which maximizes the separating margins [6,7] by
minimizing the cost function:

J(w) =
1

2
wTw =

1

2
‖w‖2 (2)

subject to the separability constraints

yi(w
Txi + b) ≥ 1, i = 1, ..., l. (3)

If the training data is not completely separable by a hy-
perplane a set of slack variables ξi ≥ 0, i = 1, ..., l is
introduced which represent the amount by which the lin-
earity constraint is violated:

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., l. (4)

In that case, the cost function is modified to take into ac-
count the extent of the constraint violations. Hence, the
function to be minimized becomes:

J(w, ξ) =
1

2
‖w‖2 + C

l∑
i=1

ξi (5)

subject to the constraints in (4).
Sometimes it is unlikely that a hyperplane will yield a

good classifier and we need a decision boundary with more
complex geometry. We can do this by mapping the at-
tribute vector into a new space of higher dimensionality
and look for a hyperplane in that new space. This is what
we call a kernel-based SVM [8, 9]. Let Φ(·) be a non lin-
ear operator mapping the input vector x to a higher dimen-
sional space. The optimization problem for the new points
Φ(x) becomes:

min J(w, ξ) =
1

2
‖w‖2 + C

l∑
i=1

ξi (6)

subject to the constraints:

yi(w
T Φ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., l. (7)

A widely used non-linear kernel is the Radial Basis
Function (RBF):

k(xi,xj) = exp(−γ||xi − xj||2) (8)

An SVM which uses an RBF kernel has two parameters
which should be estimated: the parameter C of equation 6
and the parameter γ from equation 8.

2.2. Random forests

A random forest is a classifier which consists of many
decision trees. Each tree is constructed using a subset of
samples selected from the dataset. The tree is built to the
maximum size without pruning. A subset of the set of
the features is used as candidate splitters in the nodes of
the tree. Splitting is done according to a feature ranking
mechanism (e.g. Gini Index). The samples that were not
selected for the construction of the tree constitute the test
set of the tree. Once the forest is constructed samples from
the test set are given as input to each one of the trees in the
forest. Each tree classifies the sample and actually votes
for the class in which the sample belongs. The number of
votes for each class decides the class in which this sample
belongs [10,11]. A random forest has one parameter which
should be estimated: the number of trees which constitute
the random forest.

3. Description of data

We study 40 patients with ischemic heart failure. All
recordings were acquired in the First Department of Car-
diology, Medical School, National and Kapodistrian Uni-
versity of Athens, supervised by clinical experts. Patients
underwent physical examination, chest X Ray, blood and
biochemical tests, 12 lead-ECG, ECHO, Signal Averaged
ECG (SAECG) and Holter Monitoring (HM), while per-
sonal, family history and medications were registered. All
patients provided informed consent and the study was ap-
proved by our institution’s Ethics Committee. From those
patients, 20 were characterized as high risk for SCD after
16 months of follow up and the rest 20 arrhythmia free pa-
tients considered as low risk. Further details on the data
can be found on table 1.

Table 1. Description of the dataset

High Risk Low Risk p-value
Recordings 20 20
Age (years) 64.9±13.1 66.0±15.8 0.813
Gender 18m-2f 17m-3f 0.633
LVEF (%) 29.6±9.8 34.5±9.3 0.117
Heart Rate (bpm) 73.2±14.5 66.1±10.3 0.095
Standard QRS (ms) 130±27 122±40 0.491
QT-corrected (ms) 428±35 422±33 0.569

4. HRV analysis methods as features

There is a large number of methods used for HRV anal-
ysis. We tried to cover a wide variety of methods in our
experiments and not to omit at least any of the most widely

142



used ones. We also used several non-linear methods, since
non-liner methods can sometimes extract more sensitive
information. A list of the methods used as attributes in
our classification procedure follows, grouped in different
categories.

Statistical Methods [3]: the standard deviation of NN
intervals (sdnn), the root mean square of successive dif-
ferences (rmssd), the probability the difference of succes-
sive intervals be more than 50ms (pNN50) and the stan-
dard deviation of successive differences (sdsd), as well as
the moments m1,m2,m3 and m4.

Geometrical Methods [3]: the triangular index defined
as the integral of the density distribution divided by the
maximum of the density distribution (ti).

Frequency Analysis Methods [3]: power in low fre-
quency range (LFn) and power in high frequency range
0.15-0.4 Hz (HFn) both in normalized units.

Non-linear Methods: approximate entropy (ApEn) [12]
modified to avoid self comparisons as suggested in [13]
computed for m = 2 and r = 0.2, a1 and a2 from
detrented fluctuation analysis (DFA) [14], the β expo-
nent [15]. We also computed sd1 and sd2 from the
2d Poincaré plot and vmax and vspread from the 3d
Poincaré plot. The metric vmax is extracted by construct-
ing a 3-dimensional plot, in which the azimuthal plane cor-
responds to the normal 2-dimensional Poincaré plot. We
divide this plot into subsquares and then, we estimate the
cardinal number of points in each subsquare. We plot these
cardinal number values in the z-axis. Vmax corresponds to
the maximum cardinal number and vspread to the width of
the plot. We also computed Hurst exponent with the RS
method and the wavelets method, the decorrelation time
and the mobility and complexity as defined by Hjorth [16].

Table 2. Classification using SVM

Features 25
Selected sd1,sd2,LFn,m2,sdsd,pNN50

Parameters RBF Kernel, C=125, γ=10
Validation 10–fold cross validation

Low Risk High Risk Average(weighted)
TP rate 0.9 0.85 0.875
FP rate 0.15 0.1 0.125
Precision 0.857 0.895 0.876
Fmeasure 0.878 0.872 0.875
under ROC 0.875 0.875 0.875

Accuracy 87.5%

Table 3. Classification using RF

Features 25
Selected sd1,sd2,LFn,m2,sdsd,pNN50

Parameters 20 trees, 5 random features per node
Validation 10–fold cross validation

Low Risk High Risk Average(weighted)
TP rate 0.9 0.8 0.85
FP rate 0.2 0.1 0.15
Precision 0.818 0.889 0.854
Fmeasure 0.857 0.842 0.85
under ROC 0.87 0.87 0.87

Accuracy 85%

5. Classification results

For our experiments the Weka [17] software was used.
We performed experiments with SVMs and RFs. We di-
vided each signal into a number of non-overlapping win-
dows. For each one of these windows we computed all
25 metrics described in section 4. Thus from each signal
bN/wc vectors of 25 features were produced, where N is
the length of the signal and w the size of the window.

We selected a window size of w = 1024, which is
approximately 15-20 minutes of recording, a time period
which is not far away from the time period in which the
heart beat can be considered stationary, but long enough
for methods which need longer signals to extract reliable
information. For each feature we selected the most of-
ten value for unimodal distributions or the average of the
modes when the distribution is not unimodal (mode statis-
tics).

From the set of 25 features we selected the most impor-
tant ones using a Chi Squared attribute evaluator, evaluat-
ing the worth of an attribute by computing the value of the
chi-squared statistic with respect to the class.

Results are summarized on tables 2 and 3 respectively.
The features that were selected and participated in the
classification procedure were: sd1, sd2, LFn, m2, sdsd,
pNN50. For the SVM a RBF function with C = 125 and
γ = 10 was used. Each RF was consisted of 25 trees, with
5 features per node, randomly selected. Ten-fold cross val-
idation was used to obtain the classification performance.

In these tables we can see several metrics used to evalu-
ate a classification experiment. Accuracy is the percentage
of the correctly classified samples. The True Positive (TP)
index or Recall or Sensitivity is the ratio of the number of
samples classified in a class to the total number of samples
which truly belong in this class. The False Possitive (FP)
or Specificity index is the ratio of the number of samples
classified in a class but do not belong in this class to the
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total number of samples which do not belong in this class.
The Precision index is the ratio of the number of samples
which trully belong in a class to the number of samples
classfied in this class. The Fmeasure is a combined index
computed from Recall and Precission from the following
formula:

Fmeasure =
2×Recall × Precision
Recall + Precission

.

Finally the Area Under ROC Curve is the area under the
TP versus the FP indices as the discrimination threshold
varies.

The experimental results show that both classifiers
achieved a remarkable classification accuracy. Slightly
better accuracy was achieved by the SVM classifier. From
the experimental analysis it is obvious that the classifica-
tion of low and high risk heart failure patients for arrhyth-
mic sudden cardiac death is possible and can be done with
remarkable accuracy.

6. Conclusions

We used machine learning techniques to classify heart
failure patients in two groups: those with a high risk for
arrhythmic sudden cardiac death and those with low risk.
As input to the classifiers we gave 25 HRV measures, in-
cluding all popular as well as many non-linear ones. We
performed windowed analysis with non-overlapping win-
dows of 1024 beats and for selecting the value of each fea-
ture we used mode statistics. As classifiers we used SVMs
and RFs. Both classifiers achieved very good classification
performance, with the SVMs to perform slightly better. We
can safely conclude that the classification between low and
high risk heart failure patients for arrhythmic sudden car-
diac death is possible and reliable.
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