






Table 2. Performance of each classifier, expressed as the 
percentage correct predictions on unseen data records. 
Abbreviations are defined in section 1.5. 
 

  Method used for testing 

  NB SMO NN DT J48 
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er

 

NB 67.4% 66.2% 66.4% 60.2% 61.2% 

SMO 65.0% 71.0% 70.2% 59.0% 66.7% 

NN 65.0% 71.0% 70.2% 59.0% 66.7% 

DT 65.0% 71.0% 70.2% 59.0% 66.7% 

J48 65.0% 71.0% 70.2% 59.0% 66.7% 

 
 

The variation of success using different classifier 
algorithms when using a separate subset for each 
classifier supports the findings of Kohavi [18], by 
showing that the measures chosen should be regarded as 
part of the classifier algorithm. The best measure in the 
current experiments is the second moment, although this 
measure alone cannot provide any useful discrimination 
of diabetics from controls. Using a set of measures suited 
to the chosen classifier such as the Renyi entropy is very 
important in enabling this classification. 

The success in discriminating early CAN from normal 
controls in HRV data suggests a methodology that can 
provide a very simple and quick test and if implemented, 
would bring great benefits in terms of early diagnosis and 
consequently a reduction in hospitalization and length of 
stay. 
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