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Abstract

Using clinically measured intrapartum cardiotocogra-
phy (CTG) data, the objective of this study was to com-
pare the discrimination of fetal heart rate variability in the
low frequency (LF, 30-150 mHz) movement frequency (MF,
150-500 mHz) and high frequency (HF, 500-1000 mHz)
bands for two at-risk groups: fetuses experiencing either
neonatal depression or metabolic acidosis. These parame-
ters had statistically significant differences when compar-
ing normal fetus and these indexed groups.

1. Introduction

Labour and delivery is routinely monitored electroni-
cally with sensors that measure and record maternal uter-
ine pressure (UP) and fetal heart rate (FHR), a procedure
referred to as cardiotocography (CTG). The objective of
this monitoring is to detect the fetus at substantial risk of
hypoxic injury so that intervention can prevent its occur-
rence.

In this study, we examined higher frequency FHR com-
ponents (> 30mHz), often referred to as fetal heart rate
variability (fHRV). fHRV changes in labour and deliv-
ery due to uterine contraction. We wanted to determine
whether the baseline or resting fHRV that occurs between
uterine contraction could be used to distinguish high-risk
fetuses (i.e., those with either neonatal depression, ND or
metabolic acidosis, MA) from the normal fetuses that re-
spond well to the insults of labour and delivery.

A preprocessing step in this study reduced the influence
of maternal heart rate (MHR) interference on the FHR sig-
nal and the associated fHRV estimates. With this cleaner
signal, we constructed short-term (1 min) autoregressive
(AR) models at one second increments as in [1]. An im-
portant feature of these models is that we can construct
them despite considerable missing data (a common prob-
lem with clinical CTG) in the analysis interval. Using the
AR models, estimates of the power spectral density (PSD)
were computed and the spectrum was integrated over low

frequency (LF, 30-150 mHz), movement frequency (MF,
150-500 mHz) and high frequency (HF, 500-1000 mHz)
bands to obtain three instantaneous components of fHRV.
A new feature of this study was a smoothing step which
low-pass filtered the instantaneous components. Then us-
ing overlapping 20 min epochs, the quiescent components
of each band were computed from the 5th percentile of
their probability distribution functions.

2. Data

We used CTG from singleton, term pregnancies hav-
ing no known congenital malformations, with ≥3 hours of
tracing just prior to delivery. 5320 of the cases were nor-
mal while 10 experienced ND (Apgar 5 minute score ≤ 4)
and 99 had developed MA (umbilical cord base deficit ≤
12 mmol/L). The data come from two US hospitals, one
that did routine umbilical cord blood gas measurements
and another that routinely performed only the Apgar mea-
surements. One of the hospitals also routinely recorded
maternal heart rate in addition to FHR.

3. Methods

3.1. Preprocessing

The CTG data was recorded in a clinical setting, so it
was subject to specific types of noise. The loss of sensor
contact can temporarily interrupt the UP or FHR signals,
and interference from the (much lower) maternal heart rate
can corrupt the FHR. These both appeared in the signal as
a sharp drop to much lower amplitude followed by a sharp
signal restoration. We preprocessed the data to bridge
these interruptions with linear interpolation. The FHR was
then detrended by a high-pass filter with cutoff frequency
30 mHz, corresponding to the lower limit of the LF band
of fetal HRV.

A portion of the data had maternal heart rate (MHR)
consistently recorded in addition to the FHR. When the
fetal monitor receives both signals, it attempts to detect
MHR interference with the FHR and flags these occur-
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rences. However, it was apparent from visual inspection
of the tracings in our data that some interference had re-
mained undetected. Furthermore, for many FHR-MHR
pairs, interference was associated with a low heart rate dif-
ference ∆HR=FHR-MHR, while ∆HR was much larger
for the more usual case of distinct heart rates.

Therefore to detect this residual interference, we mod-
elled the probability density function (pdf) of ∆HR for
individual recordings of MHR and FHR by a mixture of
Gaussians estimated by expectation maximization (EM).
The underlying assumption was that each Gaussian cor-
responded to a partitioning of ∆HR into interference and
non-interference samples. Final interference detection was
done by thresholding ∆HR where the posterior densities
of the two conditions were equal. Interference sections de-
tected this way were removed from subsequent HRV anal-
ysis.

We found that random initialization of the Gaussians
often led to local minima. Therefore we used a differ-
ent initialization method that incorporated some a-priori
knowledge about the ∆HR signal characteristics. We cre-
ated a preliminary ∆HR partition with a hard threshold
arbitrarily chosen from visual inspection (10 beats per
minute,bpm). Then if interference were present, pair-
specific model parameters were obtained by EM iteration
which tended to converge to a mixture of two Gaussians,
one with near-zero mean (using the above 10 bpm as an
upper limit) and another with much larger mean. When a
near zero-mean Gaussian was not selected at this stage, we
attempted to model ∆HR once again, but with a mixture
of three Gaussians. In this case EM was initialized using
the two Gaussians found at the first stage and a third with
zero mean and small variance (16 bpm2). Detection was
not attempted if a near zero-mean Gaussian was not found
at this subsequent step, or if the difference in the two low-
est means was below a threshold (chosen from inspection
as 20 bpm) or if EM did not converge.

Fig. 1 shows a typical detection for one FHR-MHR pair.
Overall, the vast majority of cases did converge within the
constraints. Two Gaussian models were sufficient for 3689
of the tracings, three Gaussian models were required for
1330 cases, and 606 cases failed. We intend to refine the
more ad-hoc aspects of this pre-processing detection step
with a more principled Bayesian approach to initialization,
constraint/threshold selection and model selection.

3.2. Power spectral density

We first estimated the fHRV using an autoregressive
model of the CTG FHR signal to estimate the power spec-
tral density (PSD), as described in [1]. The PSD was inte-
grated over LF, MF and HF bands to obtain three instanta-
neous components of fHRV sampled at 1 s intervals. We
then low-pass filtered the instantaneous components us-
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Figure 1. Detection of MHR interference on the acquired
FHR signal (a) Distinct FHR (black) and MHR (blue) sig-
nals and segments of MHR interference (red). (b) Differ-
ence signal ∆HR=FHR-MHR in non-interference (green)
and interference (red) segments. (c) Actual (blue his-
togram) and modelled (red line) ∆HR probability density
functions. The units of time on the horizontal axis in (a)
and (b) are 1 s samples. The units of heart rates are beats
per minute (bpm).

ing a FIR-filter with a 0.04 Hz cutoff frequency to focus
on the slower changes in fHRV and attenuate higher fre-
quency noise in the estimates. Finally, using overlapping
20 min epochs, the quiescent (baseline or resting) compo-
nent of each band was computed from the 5th percentile
of their probability distribution functions. This quiescent
fHRV generally corresponds to periods of lower fHRV that
occur between uterine contractions. We compared these
estimates for normal cases and the two indexed groups.

4. Results

Fig. 2(a) shows that in the LF and MF bands, the ND
group had consistently lower fHRV over time compared to
the normal group, with 11/18 epochs showing statistically
significant differences in the LF band and 13/18 epochs in
the MF band. The HF band was also lower for the ND
group, but not significantly so.

However, Fig. 2(b) shows that the metabolic acidosis
group had higher fHRV than normal, especially in the last
90 min of labour where 5 epochs in both the LF and MF
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bands and 3 epochs in the HF band had significant dif-
ferences. These results are consistent with conventional
clinical measures of variability [2].

The new preprocessing steps enhanced the quality of the
signal sufficiently to improve discrimination. The smooth-
ing step improved the discrimination with one more epoch
being significant in each of the three bands for the MA
comparison and where one (LF) and three (MF) more
epochs were significantly different in the ND comparison.
As well, in the MA comparison where maternal interfer-
ence detection was included, discrimination was improved
by one significant epoch in each of the LF and MF bands
(these intermediate results not shown in the figures).

5. Conclusions

Our fHRV estimates have identified two at-risk fetal
populations with very different characteristics: elevated
(MA) or reduced (ND) fHRV. These sub-populations may
have very different etiologies reflecting different neural
mechanisms. These parameters are therefore useful dis-

criminants of fetal state with promising potential for auto-
mated clinical decision-making.
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Figure 2. Quiescent fetal heart rate variability for low frequency (LF) and movement frequency (MF) and high frequency
(HF) bands comparing normal fetuses to (a) fetuses experiencing neonatal depression (Apgar 5 minute score ≤ 4) (b)
fetuses experiencing metabolic acidosis (umbilical cord base deficit ≤ 12 mmol/L). In each comparison, the means are
plotted with bars indicating standard error and the red asterisks indicating statistically significant differences between
normal (black circles) and indexed group (blue triangles) cases at that epoch (p <0.05, Kolmogorov-Smirnov distribution
test). The time before delivery is indicated on the horizontal axis.
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