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Abstract 

Cardiac health screening standards require 

increasingly more clinical tests consisting of blood, urine 

and anthropometric measures as well as an extensive 

clinical and medication history. To ensure optimal 

screening referrals, diagnostic determinants need to be 

highly accurate to reduce false positives and ensuing 

stress to individual patients. However, the data from 

individual patients partaking in population screening is 

often incomplete. The current study provides an 

imputation algorithm that has been applied to patient-

centered cardiac health screening. Missing values are 

iteratively imputed in conjunction with combinations of 

values on subsets of selected features. The approach was 

evaluated on the DiabHealth dataset containing 2800 

records with over 180 attributes. The results for 

predicting CVD after data completion showed sensitivity 

and specificity of 94% and 99% respectively. Removing 

variables that define cardiac events and associated 

conditions directly, left ‘age’ followed by ‘use’ of anti-

hypertensive and anti-cholesterol medication, especially 

statins among the best predictors. 

1. Introduction

Missing values (MVs) may appear in database records 

for many reasons, presenting an obstacle for data 

processing. Numerous statistical methods have been 

advanced to deal with missing data, however most are 

deployed during the model-building phase, which implies 

making assumptions about variables and how they are 

related  [1,2]. 

In clinical practice MVs are unavoidable, presenting a 

problem for disease classification or diagnosis [2,3]. It is 

sometimes possible to run a data mining algorithm in a 

mode that sidesteps MVs, but most methods perform 

better with complete data. Simple deletion of attributes 

and instances containing MVs is often not viable as this is 

able to distort perception of the data. A pre-processing 

step proposed in this paper, which makes surrogate 

entries, offers a systematic approach to the MV 

imputation problem. 

MVs are often substituted by their attribute mode or 

mean, depending on whether the attribute type is 

categorical or numerical. However, by constraining other 

involved variables, the mode or mean can be evaluated 

more specifically [3,4]. Albeit, this generic method does 

not guarantee that classification is optimal as the 

substituted values are dependent on population cohorts 

from which they are evaluated. 

In this paper, an approach is presented where a MV 

imputation algorithm employs well established risk 

factors as categorical types to guide the selection of 

substitute values. This improves on the current MV 

imputation paradigm for classification problems [3]. 

2. Context

Residents of South-East Australia have an opportunity 

to attend an annual Diabetic Health screening for type 2 

diabetes mellitus (T2DM), cardiovascular disease (CVD) 

and hypertension (HT). Data on over 180 variables was 

collected, though many variables have MVs [4]. The 

MVs hamper application of data mining algorithms 

enabling diagnostic of CVD, HT or T2DM, and removal 

of records and attributes that have MVs has a very limited 

application, as previously stated. The MV imputation 

operates on different subsets of features that are all well-

established risk factors for T2DM, CVD and HT. We call 

each subset a selector set. Selector set features were: the 

disease statuses, medication use, fasting glucose, systolic 

blood pressure (SBP), age, waist-circumference-to-height 

ratio (WCHR) and some others. 

3. Methods

The MV imputation algorithm is represented in Figure 

1. For example, if CVD, T2DM and HT were identified

as the selector set, each combination of values of the three 

variables would be attempted in turn. For instance, one 

combination of the selector feature values is {yes, yes, 

yes} drawn from the domain of CVD: {yes, no}, T2DM : 

{yes, no} and HT: {yes, no}.  The records with values on 

the selector features {yes, yes, yes} are then assembled. 
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Within the assembly, each non-selector feature that has a 

MV is then replaced with the mean for that set if the 

feature is continuous or the mode if it is categorical. This 

is repeated for all combinations of the selector set features 

to comprise a single pass. 

Figure 1. Schematics of the proposed algorithm for 

imputation of missing data 

Some combinations of selector features resulted in 

datasets that were too small or too riddled with MVs so 

not all MVs could be typically set in a single pass. 

Therefore, the selector set was dynamically modified by 

removing some features and returning some previously 

removed features until all selector combinations had been 

tried. Any features that still have MVs are then filled 

using the global mean or mode from the whole data, but 

this was not required. 

The selection of features to form the selector set at 

each pass is performed using an information measure 

used in the Info-Neighbour algorithm [3]. Selector 

features with higher Information Gain (IG) persist longer 

in the selector set through multiple passes than those with 

lower IG. When continuous features such as age, SBP, 

fasting glucose and WCHR were included in the selector 

set, they were required to be discretised so that a dataset 

pertaining to each combination of selector set values 

could be assembled. This was achieved by subdividing 

the range into a number of intervals of fixed frequency [3] 

with boundaries then adjusted to match thresholds known 

from the literature for these variables.  

MVs were required to be assigned where not all 

subject’s disease statuses were known. For this CVD, 

T2DM and HT statuses were set using other features or 

related disorders following clinical guidelines or practices 

accepted in the field [5]. 

The MV imputation method was first developed for 

T2DM classification [4]. The same algorithm can be used 

to cater for CVD and HT classification, which are 

connected classification problems. We imposed a 

minimum on the size of a data subset drawn to calculate 

substitute values for missing entries. Within these subsets, 

the means of continuous attributes are recalculated if 

some of the input is vastly different from the mean and 

therefore potentially erroneous. 

Upon data imputation, our primary interest was to be 

able to classify data according to CVD status. To verify 

the predictability of CVD, the Info-Neighbour and the 

Naïve Bayesian classifiers were deployed [3]. The 

classification accuracy was evaluated by using leave-one-

out cross-validation [6] in each of the eight years 

recorded and sensitivity and specificity determined. 

Balanced accuracy is the mean of the two quantities [3]. 

Classification of CVD after data completion was 

performed with 205 attributes including the status for 

each record listed. This number does not include features 

that are conventionally used to set CVD status. 

Specifically, the information about cardiovascular events 

and cardioneuropathic disorders as well as use of 

anticoagulant and antiplatelet medications [5] was 

withheld. The classification task was also attempted with 

a reduced set of just over 90 features with high IG.  

Additionally, a number of features were individually 

evaluated for the ability to predict CVD status. This was 

done by calculating optimal cut-off levels that maximise 

the balanced accuracy of classification, which is beyond 

the scope of this account. The accuracy as the objective of 

optimisation was evaluated on the full dataset (all years). 

The accuracy of classification using the obtained cut-off 

levels was then tested by distributing the records 

randomly five times into two equally sized folds 

proportionally to class memberships in the full dataset, 

which is regarded an unbiased approach [4]. 

4. Results

The data of 6776 records for 847 participants over 8 

years was assembled presenting a missing value rate of 

36%. The results plotted as the receiver operating 

characteristic chart are presented in Figure 2. The high 

accuracy of the Info-Neighbour and Naïve Bayesian 

classifiers is evident. There are clearly two clusters, one 

for each classifier regardless of whether the full or 

reduced set of features was used. 

Evaluation of classification accuracy is specific to the 

dataset where the eight subsets corresponding to the eight 

years recorded contain the same number of records with 

no participant repeated in any given year. Also the 

composition of the data ensures that the subsets are 

independent from each other as much as possible. With 

all features, the Info-Neighbour method showed 

specificity, sensitivity and balanced accuracy of 99±1%, 

94±3% and 97±2%, respectively. For the reduced feature-

 

 

  



set the results were 99±1%, 95±4% and 97±2%, 

respectively. By the Naïve Bayesian method the means 

and standard deviations for specificity, sensitivity and 

balanced accuracy were 84±3%, 82±1% and 83±2%, 

respectively, for all features, and 85±3%, 84±2% and 

84±2%, respectively, with the reduced set of top 

performing features. It is evident that the reduced feature-

set is no less accurate than the full set. 

The best performing continuous features are given in 

Table 1 together with the accuracy achieved with optimal 

cut-off levels. Assuming that levels increase when 

corresponding cut-offs are reached, across the boundary 

the decision (i.e. CVD status) is either ‘yes’ or ‘no’, as 

shown. 

Values of any nominal attribute can be distributed into 

two groups in a number of ways to classify a binary 

output, which was in the current case CVD status, which 

can be either ‘yes’ or ‘no’. These groups can be given 

appropriate names and one-to-one correspondence 

established between the groups and the two data classes. 

Obviously, no grouping is required for attributes with 

only two values. 

Figure 2. Classification accuracy using all or only top 

features by two classifiers on eight samples 

Table 2 lists the nominal group values that optimally 

correspond to a specific CVD status for the best 

performing variables of the nominal type. The heart 

function can be graded either as ‘normal’ or ‘abnormal’ 

with a number of levels to the latter. The foot reflex is 

either ‘absent’ or ‘reduced’ – the two grouped as ‘weak’, 

or else ‘present’. 

From Tables 1 and 2 it is evident that age and use of 

antihypertensive medication are the main contributors of 

CVD diagnostic outcomes, while also being included in 

the Framingham CVD risk calculation [7]. From Table 2, 

HT (as a substitute for SBP) and T2DM statuses are also 

influential factors used in the formula. To enter the SBP 

term for the purpose of evaluation we regarded 

participants with no CVD as untreated and those with 

CVD as treated for high blood pressure. 

Table 1. CVD diagnostic cut-off levels and balanced 

accuracy (BA) for continuous features 

Name * Cut-off CVD BA % 

CVD Risk (%) by BMI 26.86 yes 72±1 

CVD Risk (%) by 

TC&HDL 

18.23 yes 71±1 

Age (years) 62.50 yes 69±0 

GSSG (μmol/L) 356.7 yes 68±0 

LDL (mmol/L) 2.687 no 66±0 

Homocysteine 

(mmol/L) 

9.215 yes 64±1 

IL-6 (pg/mL) 17.28 yes 64±0 

GSH (μmol/L) 1658 yes 63±1 

D-dimer (mmol/L) 0.6161 yes 63±1 

HbA1c (%) 6.020 yes 63±1 

Standing 3min PP 

(mmHg) 

49.95 yes 62±1 

HRV DFA32 85.59 no 62±1 

HRV RR (msec) 1010 yes 59±0 

HRV HR (1/min) 59.95 no 58±1 

*BMI – body mass index; TC – total cholesterol, HDL – high

density lipoprotein cholesterol, LDL – low density lipoprotein 

cholesterol; GSSG - glutathione disulphide, GSH - reduced 

glutathione; HbA1c  - glycated hemoglobin; PP = SBP - DBP – 

pulse pressure; HRV – heart rate variability, DFA32 – detrended 

fluctuation analysis using 32 instance segments of a transformed 

time series of heart beats, RR – mean time between consecutive 

heart beats by ECG R waves. 

Table 2. CVD status optimal value correspondence and 

balanced accuracy (BA) for nominal features 

Name Value CVD BA % 

Antihypertensive meds taken yes 69±1 

Heart Function normal no 69±1 

Antilipidemic meds taken yes 66±1 

Foot Reflex weak yes 64±1 

HT Status yes yes 63±1 

T2DM Status yes yes 61±1 
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5. Discussion

Recent research has been on the rise in applying 

different data mining techniques for CVD classification. 

Applying hybrid models such as genetic algorithms with 

neural network weights an accuracy of 89% has been 

reported [8].  These studies have predominantly replaced 

MVs with the global mean for each attribute. Our 

research is unique as the novel imputation algorithm is 

based on dynamic clustering of several cardiac risk 

factors, including biomarkers and is capable of imputing 

MVs on an individual basis and spans several years. The 

proposed Info-Neighbour method [3] achieved an 

accuracy of 97%. 

The Framingham CVD risk [7] featured in Table 1 has 

proven its utility internationally [9] and is the best CVD 

predictor in our study. The Framingham CVD risk 

accounts for age, SBP and treatment for it, smoking and 

diabetic status, and additionally either body mass index 

(BMI) or cholesterol levels (TC&HDL). It is calculated 

separately for men and women. It is often recommended 

that an all-inclusive treatment for CVD were started as 

early as at 20% risk in clinical practice. Here we find the 

optimal level by BMI higher at 27%. It is likely that due 

to antilipidemic medication the optimal risk by TC and 

HDL instead of BMI is much lower, demonstrating the 

effect of risk reduction. Statins by far are the best 

representatives of the antilipidemic group and are known 

to significantly reduce LDL (Table 1) and TC, while in 

absence of medication cholesterol levels are known to 

correlate strongly with BMI [4]. 

In the current study BMI was not shortlisted as a 

strong predictor of CVD. WCHR, which is invariant with 

respect of gender, similar to BMI, performed much better 

in agreement with previous research [4].  

There are some highly anticipated and performing 

correlates of CVD status such as the ECG (heart function) 

abnormality and the weakness of reflex in feet (Table 2) 

that are not in the formula of CVD risk.  Although, with 

the exception of CVD risk, Table 1 and 2 results cannot 

be regarded as strong, suggesting that these attributes may 

not be directly related to CVD if taken individually but 

may confer better accuracy if applied in combination with 

other attributes. Some variables from Table 1 are 

regarded as emergent markers for CVD. For instance, D-

dimer is a possible biomarker of endothelial dysfunction 

associated with atherosclerosis and CVD [10]. Heart rate 

variability (HRV) measures obtained from the raw ECG 

were also identified [11]. 

6. Conclusion

Missing values (MV) are often guessed/imputed for 

convenience of dealing with complete data when applying 

classification or other data mining methods, which is a 

topic we previously extensively discussed [3]. Here we 

modified a dynamic clustering approach previously 

adopted by us [4]. The MV imputation algorithm is an 

important addition to individualised healthcare in the 

current population screening environment since it allows 

the prediction of CVD in patients who do not provide all 

the required cardiac health predictor variables. 
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