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Abstract 

Estimation of left ventricular (LV) volumes from 3D 
echocardiography (3DE) is a popular clinical approach 
in accurate assessment of left ventricular function for the 
diagnosis of cardiac disease. The segmentation of 3DE 
volumes is a crucial step in traditional methods. 
Nevertheless, segmentation itself is an extremely 
challenging problem due to the presence of speckle noise 
and discontinuous edges. Therefore, direct left 
ventricular volumes estimation methods without the 
segmentation become attractive in cardiac function 
analysis. The aim of this paper is to present a fully 
learning framework to estimate the left ventricular 
volume in 3DE. The proposed method combined 
unsupervised multi-scale convolutional deep network and 
random forests. The multi-scale convolution deep network 
adopted multi-scale convolutional filters to represent 
features of unlabeled end-diastolic and end-systolic 3DE 
volumes (EDV and ESV). And then we formulated left 
ventricular volume estimation as a regression problem 
and used random forests for efficient volume estimation. 
The experiments results suggested that our proposed 
method is feasible and can achieve higher accuracy, even 
in case of echocardiography images with irregular 
geometry. 

1. Introduction

Assessment of cardiac function in cardiac diseases is 
an important topic in clinical practice and scientific 
research. Left ventricle (LV) volume estimation is one of 
the most important focus attracting wide attentions.  

So far, there are a large number of imaging modalities 
for assessing cardiac functions. Magnetic resonance 
imaging (MRI), for its high spatial resolution, is known as 
the gold standard for the LV volume estimation. 
However, it is expensive and has low temporal resolution, 
which are crucial limitations for cardiac imaging. Instead, 
cardiac computed tomography (CT) has high spatial 
resolution, allowing a better distinction between 
myocardium and blood, as well as a high temporal 

resolution to adapt to cardiac beat. However, as it needs 
injection of contrast agents, cardiac CT is not employed 
for cardiac imaging frequently. Due to the characteristics 
of low cost and real-time imaging, echocardiograph has 
become the typical modality for cardiac function 
detection in clinical diagnosis. Therefore, it is the most 
promising imaging modality that is widely used in 
clinical practice.  

Based on echocardiograph, several different methods 
have been proposed to estimate the LV volumes [1-8]. 
Among them deformable models (such as active contours 
and level sets) are the most popular segmentation 
methods for estimating the LV volume. With the active 
contour method, segmentation was achieved based on 
optimization of energy function which consists of internal 
energy and external energy [1, 4]. Level sets use the zero 
level-set to represent the contour [2, 9, 10]. Moreover, 
active shape model (ASM) [5, 11] and active appearance 
model (AAM) [8, 12, 13], which are based on the prior 
statistical information, are used for segmentation of the 
contour. ASM and AAM use the manual labelled contour 
and joint distribution to estimate the parameters 
representing the shape or appearance of the LV. 
Classification methods [7, 14, 15], such as cluster, depend 
on a large data set. According to the features acquiring 
from dataset, these methods train classifiers and then 
classify the objects into different classes.  

Note that the segmentation of LV is the crucial step of 
above methods. Nevertheless, segmentation itself is an 
extremely challenging problem due to the presence of 
speckle noise and discontinuous edges of images. 
Therefore, direct left ventricular volumes estimation 
methods without the segmentation still remains a 
challenge for cardiac function analysis [16]. The aim of 
this study was to develop a fully learning framework to 
estimate the left ventricular volume based on 3D 
echocardiographic images. 

2. Methods

The flowchart of the proposed method is showed in 
Figure 1. The proposed method combines unsupervised 
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multi-scale convolutional deep network and random 
forests. First, the multi-scale convolution deep network 
adopted multi-scale convolutional filters and restricted 
Boltzmann machine (RBM) to represent features of 
unlabeled end-diastolic and end-systolic 3DE volumes 
(EDV and ESV). And then left ventricular volume 
estimation was formulated as a regression problem and 
random forests were used for efficient volume estimation. 

2.1. Feature representation 

Features, the crucial representations of cardiac images, 
will directly affect the results of regression forests. The 
proposed method used multi-scale convolutional deep 
network to acquire features of cardiac images. 

2.1.1  Restricted Boltzmann machines 

Restricted Boltzmann Machine (RBM), which contains 
a visible layer V and a hidden layer H, is a completely 
connected bipartite graph. The visible layer and the 
hidden layer are connected by the weight matrix W. 
However, there is no connection between any units which 
are among the same layer. So, if the visible layer is given, 
the hidden units are conditionally independent, and vice 
versa. Otherwise, the RBM is optimized by contrastive 
divergence approximation.  

2.1.2  Convolutional Restricted Boltzmann 
machines 

Convolutional Restricted Boltzmann Machines 
(CRBM) combine the RBM and convolutional filters 
[13]. Similar to RBM, it also has a visible layer V and a 
hidden layer H. But, the weights which connect the 
visible layer and hidden layer become shared weights W 
using the same convolutional filter for every group of 
hidden layer. NV*NV array denotes the input layer. There 
are k groups of hidden layer and every NH*NH array 
denotes a group of hidden layer. In our work, the size of 
every convolutional filter is different and it is denoted by 
NK*NK. Therefore, we had a multi-scale convolutional 
Restricted Boltzmann Machine. Besides, the visible layer 
has a bias c and every hidden group has a bias bk. The 
definition of probabilistic semantics ( , )P v h  and energy 
function E(v,h) are : 
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Where Z denotes partition function.  

2.1.2  Convolutional Deep Belief Networks 

Based on the CRBM and probabilistic max-pooling, 
the Convolutional Deep Belief Networks (CDBN) was 
proposed [17]. Probabilistic max-pooling is a generative 
model. The energy of probabilistic max-pooling-CRBM 
is defined as: 
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CDBN consists of several probabilistic max-pooling-
CRBM and uses the method which is same to DBN to 
train the networks. The training method treats the each 
layer of DBN as an RBM. And make the output of trained 
layer as the input of the next layer. Figure 2 shows the 
feature maps of CDBN. 

2.2. Random forests 

Random forests [6], a typical machine learning method, 
consist of many binary trees. Simple random sampling 
with replacement is used to select samples, which are 
treated as the training subset of every tree. Analogously 
to the selection of training subset, there are parts of 
features used as split features for every tree. The features 
are randomly selected without replacement for subtree for 
split. According to the judgement of the split node, the 
data in the current split node is sent to right or left child 
node. In our work, we used random forests as a regression 
method to estimate the LV volume. The input of random 
forests is the feature maps acquiring by CDBN, and the 
output is the LV volume.  

3. Results

3.1.      Datasets and setting 

In our experiments, the datasets contain a training set 
and a validation set. For the training set, 60 unlabeled 

volumes
Learned Multi‐scale 
Convolutional filters Learned RBM

Convolutional Deep Brief Networks

Feature representation 

Trained 
Regression 
Forests

Prediction

Figure 1. The proposed flowchart using unsupervised feature representation and random forest regression. 

 

 

  



echocardiography volumes from 30 patients are used for 
unsupervised feature learning, 120 labeled 
echocardiography volumes from 60 patients for the 
training of random forests. For the validation set, 120 
labeled echocardiography volumes from another 60 
patients for the validation of left volume estimation.  For 
the training set and validation set, there are half patients 
with cardiac dysfunction and others are healthy. Due to 
the valve of base part and the muscle tissue of the apical 
part are not benefit for the volume estimation, we 
acquired one-third volume from the middle of the full 
volume for every volume to represent the original volume. 
Furthermore, we sliced one-third volume into ten frames 
uniformly.  

For the proposed method, we used a CDBN and 
random forests.  The CDBN followed  the original work 
[17], the connections between all layers are undirected. 
And there are three hidden layers for CDBN. There are 16, 
64 and 128 groups for the first layer, second layer and 
third layer, respectively. The sizes of the corresponding 
group are 51*51, 7*7 and 3*3. The dimension of input of 
the CDBN is 10*128*128. 

Random forests are used for the analysis of regression 
of LV volume. Due to the range of LV volume is from 1 
to 600ml, we design 600 leaf nodes for every tree. As we 
know, the number of trees is crucial for the random 
forests, it has large effect on the effectiveness and 
efficiency of the experiments results. Therefore, we 
compared the experiments results of different number of 
trees to select the appropriate number of trees for the 
experiments. 

3.2. Metrics 

We adopted the EDV, ESV and EF to evaluate the 
prediction results of the proposed method. EF is the 
important clinical index and is calculated by the 
following formula: 

EDV ESV
EF

EDV


 ⑷

Otherwise, we compared the estimated volumes with 
the ground truth from cardiologist in terms of correlation 
coefficients and mean errors on EDV, ESV, and EF. 

3.3. Experiments results and discussion 

The experiments results suggested the proposed 
method is effective. Figure 3 shows the effect of the 
number of trees of random forests. With the increase of 
number of trees, the correlation coefficient increased but 
with a small fluctuation. However, the cost of 
computation increased as well. We used 200 trees in our 
experiments which can effectively balance the accuracy 
and the cost of computation. This also indicates that if we 
ignored the cost computation or used high-performance 

machine, we can use more trees to achieve higher 
accuracy. 

Figure 4 shows the correlation between the predicted 
results and the ground truth. The R values for EDV, ESV 
and EF are 0.850, 0.871 and 0.863. We also used Bland-
Altman (BA) to analyze the differences distribution 
between our method and ground truth. Figure 5 shows the 
difference distribution between the predicted results and 
ground truth, the means for EDV, ESV and EF are -8.4ml, 
0.4ml, 0.04, the confidence intervals are (-59.9-43ml), (-
39.9-40.6ml) , (-0.19-0.12). We found that the results of 
Bland-Altman analysis is worse, which can be related to 

Figure 3. The performance of random forests with
different numbers of trees. 

Figure 4. Correlation graphs. The correlation between
predicted EDV and true EDV, predicted ESV and true
ESV, predicted EF and true EF, respectively. 
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the lack of adequate dataset to train and validate the 
model. If we have more data, it is possible to achieve 

better agreement and reduce the overfitting. However, the 
high correlation shows clinical indexes derived from the 
estimated volume were in good agreement with ground 
truth from manual evaluation, and our method has 
potential clinical applicability for the LV volume 
estimation.   
4. Conclusion

In this paper, we proposed a method for direct 
estimation of LV volume using a fully learning method. 
The method avoids the segmentation of 3DE volumes, a 
crucial step in traditional methods. On the whole, this 
method used the CDBN to capture features from original 
volumes and the trained random forests to estimate the 
LV volume. The experiments results demonstrate the 
method is feasible and can accurately evaluate the LV 
volume, even in case of irregular geometry of images. 
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