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Mikael Henriksson1, Andrius Petrėnas2, Vaidotas Marozas2, Frida Sandberg1, Leif Sörnmo1

1 Department of Biomedical Engineering and the Center for Integrative Electrocardiology (CIEL),
Lund University, Lund, Sweden

2 Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania

Abstract

Ambulatory ECG recordings are frequently corrupted
by artifacts caused by, e.g., muscle activity or moving elec-
trodes, which complicates the analysis of f-waves and mo-
tivates signal quality assessment to improve the reliability
of f-wave analysis. Although many methods have been de-
veloped for assessing the quality of ECG signals in gen-
eral, no method deals specifically with f-waves. This study
proposes a novel signal quality index (SQI), using a model-
based approach for assessment of f-wave signal quality.
To evaluate the performance of the SQI, 189 5-s record-
ings of f-waves from AF patients are studied, as is the
same number of recordings with motion artifacts and elec-
trode movements taken from the MIT-BIH Noise Stress Test
Database. The signal quality index is capable of discrimi-
nating between f-waves and noisy recordings with an accu-
racy of 98%. The results suggest that the proposed signal
quality index correctly identifies noisy recordings, and can
be used to improve the reliability of f-wave analysis.

1. Introduction

When analyzing ECG signals, it is essential to use a
signal quality index (SQI) indicating to what degree the
recorded information can be relied on; otherwise, noisy
measurements will disrupt the subsequent analysis. This
is of particular importance when working with ambulatory
or continuous long-term ECG recordings, which are com-
monly corrupted by the artifacts caused by muscle activity
or moving electrodes. Several indices have been proposed
for assessing the quality of ECG signals, including the rel-
ative power of baseline variation, signal kurtosis, and the
ratio of the number of beats detected by two different QRS
detectors, of which one detector is tuned to be more sen-
sitive to noise than the other [1, 2]. These SQIs are well-
suited for assessment of overall signal quality, where the
aim is to exclude bad-quality segments from further anal-
ysis.

The analysis of atrial fibrillation (AF) is frequently per-
formed in ambulatory settings. The challenge remains to

develop methods robust enough to handle the often en-
countered poor signal quality, in particular when the ECGs
are recorded using hand-held, single-lead devices [3].
While the previously mentioned SQIs are of use when per-
forming RR interval analysis, there is a need for an SQI
specifically designed to provide information on whether
the f-waves can be reliably measured and analyzed. If ac-
curately extracted from the original ECG, the properties
of the f-waves may contain clinically relevant information
about the disease [4].

This study introduces a novel approach to f-wave mod-
eling, using a harmonic signal accounting for variations of
f-wave amplitude and phase. The fundamental frequency
is given by the AF rate, estimated from the observed sig-
nal using a maximum likelihood approach. The proposed
f-wave SQI uses the root-mean-square (RMS) of the dif-
ference between the model signal and the extracted f-wave
signal.

2. Method

As input, the method always uses the complex atrial ac-
tivity signal x, obtained by applying spatiotemporal QRST
cancellation [5], followed by the Hilbert transform, to ECG
signals.

2.1. Modeling of f-waves

The f-waves are modeled by the complex signal s(n; θ),
defined as the sum of two complex exponentials with fun-
damental angular frequency ω0,

s(n; θ) =

2∑
m=1

Ame
j(mω0n+φm), (1)

θ =
[
ω0 A1 A2 φ1 φ2

]T
, (2)

whereAm and φm denote the amplitude and phase, respec-
tively, of them:th exponential. All parameters are assumed
to be deterministic but unknown. The model f-wave signal,
having a length of N samples, is represented by the N × 1
vector s(θ), in which s(n; θ) is the n:th element.
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The input signal x is assumed to be the sum of s(θ) and
white, complex Gaussian noise. Thus, x is characterized
by the following probability density function

p(x, θ) =
1

πNσ2N
e
−||x− s(θ)||2

σ2 , (3)

where || · ||2 denotes the Euclidian norm and σ2 denotes
the noise variance, which initially is assumed to be known.
The maximum likelihood estimator of θ can therefore be
formulated as

θ̂ = arg min
θ
||x− s(θ)||2, (4)

where the estimate of ω0 is constrained to realistic AF fre-
quencies. The optimization is performed using the white
noise approach described in [6]. The estimate ω̂0 repre-
sents a global frequency estimate as it is based on the en-
tire signal, and can be regarded as an estimate of the AF
frequency.

Since f-waves may exhibit considerable variation in AF
frequency [7], variation in ω0 is allowed by dividing x
into K overlapping subsegments and determining a local
frequency estimate ω̂0,k, which may deviate a maximum
of ∆ω0 from ω̂0, for each subsegment, using the same
maximum likelihood approach as before.

The local frequency and phase estimates ω̂0,k and φ̂m,k
are used to create constant-amplitude basis vectors bm,m =
1, 2, describing the phase variation of the signal, by com-
puting the local phase information vectors ym,k,

ym,k =


mω̂0,k0 + φ̂m,k
mω̂0,k1 + φ̂m,k

...
mω̂0,k(L− 1) + φ̂m,k

 , k = 1, . . . ,K,

(5)
which contains phase information of the m:th harmonic
in the k:th subsegment. The harmonically related phase
vectors ym,k are aligned and averaged to produce a
global N × 1 phase vector ym, used to construct a basis
vector bm for each harmonic,

bm = cos(ym). (6)

The model signal is finally obtained by multiplying each
element of each basis vector, bm(n), with the correspond-
ing sample-by-sample amplitude am(n). The amplitudes
are estimated by imposing a constraint ∆am on the maxi-
mum sample-to-sample variation in am(n),

|am(n)− am(n− 1)| ≤ ∆am, n = 1, . . . , N − 1, (7)

and minimizing the error between the model signal and the
input signal using a least squares estimator.
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Figure 1. Example of f-wave modeling including a) ob-
served f-waves x, b) modeled f-waves ŝ and c) model error
x− ŝ.

The minimization problem is solved using the convex
optimization package CVX (CVX Research, Inc [8]). Fi-
nally, the estimated model signal ŝ(n) is obtained by mul-
tiplying the estimated amplitudes with the basis functions,

ŝ(n) =

2∑
m=1

âm(n)bm(n), n = 1, . . . , N. (8)

An f-wave modeling example is presented in Fig. 1.

2.2. Signal quality index

The normalized RMS of the model error x − ŝ defines
the SQI,

S = 1− σx−ŝ

σx
, (9)

where σx−ŝ and σx denote the RMS of x − ŝ and x, re-
spectively. The value of S is restricted to the interval [0, 1],
where 0 indicates poor signal quality and 1 indicates per-
fect modeling of x.

2.3. Datasets and Performance Evaluation

A database with 12-lead ECGs recorded from 189 pa-
tients with permanent AF is analyzed, acquired at the Uni-
versity Hospital in Lund [9]. A 5-s segment is extracted
from lead V1 in each ECG. Spatiotemporal QRST cancel-
lation is performed to obtain the atrial activity signals.

Two types of noise, muscle artifacts and noise due to
electrode movements, are extracted from the MIT–BIH
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Table 1. Simulation parameters for the sawtooth f-wave
model.

Simulation setup
H 3
F0 7 Hz
∆F 0.25 Hz
Fm 0.2 Hz
∆a a/3
Fa 0.2 Hz

Noise Stress Test Database [10]. The signal-to-noise ra-
tio (SNR) is defined by

SNR =
σf
σn
, (10)

where σf and σn denotes the RMS of the f-waves and
the RMS of the noise, respectively. To evaluate the rela-
tionship between S and SNR, this study uses an extended
version of the sawtooth model for simulating f-waves pro-
posed in [5], which includes a stochastic component so that
more complex f-wave patterns can be generated [11]. The
simulated f-waves are composed of two components with
equal RMS,

f(t) = fd(t) + fs(t), (11)

where fd(t) is the sawtooth signal defined by

fd(t) =

H∑
h=1

ah(t) sin

(
2πhF0t+ h

∆F

Fm
sin(2πFmt)

)
,

(12)
where F0 denotes the AF frequency, ∆F denotes the maxi-
mum frequency deviation, and Fm denotes the modulation
frequency. The amplitude ah(t) is defined by

ah(t) =
2

hπ
(a+ ∆a sin(2πFat)) , h = 1, . . . ,H,

(13)
where a denotes the sawtooth amplitude, ∆a the maximum
amplitude deviation, and Fa the amplitude modulation
frequency. The stochastic component fs(t) results from
bandpass filtering of white noise—the filter having two
passbands symmetrically related to F0 by [0.65F0, 0.95F0]
and [1.05F0, 1.35F0]. The parameter a is chosen such that
σf = 50 µV . The remaining simulation parameters are
displayed in Table 1. The continuous signal f(t) is sam-
pled at a rate of 50 Hz. Examples of simulated signal with
different SNRs are illustrated in Fig. 2.

Prior to signal quality assessment, the original sampling
rates are decimated to 50 Hz and the segment length N
is set to 250 samples, i.e., 5 s. The signal subsegments
have a length of 0.5 s, thus containing at least one f-
wave period. Each subsegment is shifted one sample at
a time from the preceding subsegment. The grid search
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Figure 2. Examples of simulated f-waves with added noise
from a) motion artifacts, SNR = 2, b) electrode move-
ments, SNR = 2, c) motion artifacts, SNR = 1 and d)
electrode movements, SNR = 1.

for finding the global estimate ω̂0 is performed in the in-
terval [4, 12] Hz. Moreover, the maximum deviation is set
to ∆ω0 = 0.25 Hz. The maximum sample-to-sample vari-
ation in amplitude is set to 1% of the RMS of the input
signal for the fundamental frequency (∆a0 = 0.01σx),
whereas it is set to zero for the harmonic (∆a1 = 0).

3. Results

Figure 3 presents the distribution of S for f-wave signals
in the 189 5-s segments from the QRST-cancelled ECGs,
along with the distributions of S for equally many signals
containing either muscle artifacts or noise due to electrode
movements (but without cardiac activity). Both types of
noise are characterized by considerably lower values of S
than are f-waves and S is capable of discriminating be-
tween f-waves and noisy recordings with an accuracy at
98%.

The relationship between S and SNR is established for
muscle artifacts and noise due to electrode movements
added to simulated f-waves. In total, S is computed for
10 000 different realisations of f-waves and noise. The re-
sults are presented in Fig. 4. For SNR = 1, S is close
to 0.3, being slightly larger for muscle artifacts than for
noise due to electrode movements. As the SNR decreases,
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Figure 3. Histograms of S for signals with either f-waves,
muscle artifacts, or noise due to electrode movements. For
ease of interpretation, the histogram bins are connected
with straight lines.
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Figure 4. S as a function of SNR. The bars represent the
standard deviation.

S obtains a value of about 0.1, i.e., similar to the values
for the noisy signals in Fig. 3. It should be noted that the
dispersion of S is largely independent of SNR.

4. Discussion and Conclusion

A novel f-wave SQI for use in QRST-cancelled ECG
signals is introduced. The computation of S is performed
using a harmonic f-wave model based on the maximum
likelihood estimate of fundamental frequency and allow-
ing for variations of amplitude and phase. When applied
to ECG signal from AF patients and noise signals from the
MIT-BIH Noise Stress Test Database, S successfully sep-
arates the two signal types with high accuracy.

The value of S is also clearly responsive to increases in
noise level in signal containing f-waves, which is demon-
strated in Fig. 4. This suggests that the use of S assists in
the exclusion of noisy AF signals, and thus improves the
reliability and robustness of the subsequent analysis of the
f-waves.

The properties of S should be further studied, in par-

ticular with respect to ECG signals not containing AF,
e.g. from patients in sinus rhythm or in other arrhyth-
mias. Also, a more thorough study regarding its relation
to f-wave properties, and the accuracy of estimating these
properties, is needed.
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