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Abstract 

Electrocardiograms (ECG) provide a non-invasive 

approach for clinical diagnosis in patients with cardiac 

problems, particularly atrial fibrillation (AF). Robust, 

automatic AF detection in clinics remains challenging. 

Deep learning has emerged as an effective tool for 

handling complex data analysis with minimal pre- and 

post- processing. 

A 16-layer 1D Convolutional Neural Network (CNN) 

was designed to classify the ECGs including AF. One of 

the key advances of the proposed CNN was that skip 

connections were employed to enhance the rate of 

information transfer throughout the network by 

connecting layers earlier in the network with layers later 

in the network. Skip connections led to a significant 

increase in the feature learning capabilities of the CNN 

as well as speeding up the training time. For comparisons, 

we also have implemented recurrent neural networks 

(RNN) and spectrogram learning.    

The CNN was trained on 8,528 ECGs and tested on 

3,685 ECGs ranging from 9 to 60 seconds in length. The 

proposed 16-layer CNN outperformed RNNs and 

spectrogram learning. The training of the CNN took 2 

hours on a Titan X Pascal GPU (NVidia) with 3840 cores. 

The testing accuracy for the CNN was 82% and the 

runtime was ~0.01 seconds for each signal classification. 

Particularly, the proposed CNN identified normal rhythm, 

AF and other rhythms with an accuracy of 90%, 82% and 

75% respectively.   

We have demonstrated a novel CNN with skip 

connections to perform efficient, automatic ECG signal 

classification that could potentially aid robust patient 

diagnosis in real time. 

 

1. Introduction 

Cardiovascular disease is one of the leading causes of 

death worldwide. Atrial fibrillation (AF) is the most 

commonly sustained arrhythmia and is associated with 

substantial morbidity and mortality [1-3]. Early AF 

detection may enhance the effectiveness of clinical 

treatment and prevention of its serious complications [4]. 

Electrocardiograms (ECG), used to obtain a record of a 

patient’s heartbeat first by Muirhead in 1872 via wires 

attached to the patient’s wrist, is a widely used non-

invasive approach for clinical diagnosis in patients with 

AF, as well as other types of cardiac arrhythmia.  

Due to the important role of ECG diagnosis, 

monitoring and interpretation in clinics, numerous 

automatic approaches were proposed in the past[5]. 

However, all these approaches for AF diagnosis from 

ECG recordings are not very effective. 

Deep learning, in recent years, has emerged as an 

effective tool for data analysis. The use of artificial neural 

networks in deep learning have been responsible for 

drastically improving sequential data processing tasks 

such as speech recognition, language translation and text 

to speech software, due to the powerful feature learning 

abilities of neural networks for understanding complex 

datasets. Most state-of-the-art neural networks perform 

predictions from raw data inputs, taking efficiency in data 

analyses to a higher level and bypassing the need of 

expert knowledge. The purely data-driven nature of these 

algorithms allows their performance accuracy to increase 

accordingly with increasing amounts of data. 

In this study, we have proposed a purely data-driven, 

deep learning pipeline, a 16-layer deep convolutional 

neural network (CNN), for the automatic classification of 

ECG signals from the Computing in Cardiology (CinC) 

Challenge 2017 into 4 distinct categories including AF. 

The large dataset of ECG data recorded from patients and 

associated labels provided by experts will provide an 

ideal framework for developing and validating an 

efficient approach for ECG diagnosis [5].   

 

2. Methods 

2.1. ECG Data 

The ECG classification challenge was a sequential 

classification task where a single label was required for 

each individual input signal. The training dataset for the 

competition consisted of 8,528 single lead ECG recording 

ranging from 9 to 60 seconds in length with a sampling 

rate of 300 Hz [5]. Manual classification by a team of 

experts for the ECG data contained four classes: normal 

rhythm (N), AF rhythm (A), other rhythm (O) and noisy 

recordings (~). The online hidden testing set consisted of 

3,658 samples similar to the training set (Figure 1). A 

Computing in Cardiology 2017; VOL 44 Page 1 ISSN: 2325-887X  DOI:10.22489/CinC.2017.066-138 

  



typical waveform for each class is shown in the lower 

panel of Figure 1. 

 
 

Figure 1: Top: The distribution of training and test set 

samples. Bottom: Typical recordings for each of the 4 

classes in the data set. 

 

2.2. Deep Learning Approaches 

In this study, we have developed and compared three 

machine learning approaches: recurrent neural networks 

(RNN), spectrogram learning, and 16-layer CNN for the 

ECG classification task. 

2.2.1 Recurrent Neural Networks 
A 3 layer RNN was designed to extract temporal 

features from the raw waveform [6]. The RNN processed 

the input signal values sequentially with a feedback 

mechanism for any particular value by gaining the 

information learnt from the prior input values. This then 

propagated to the next temporal location where the same 

operations occurred. This allowed the raw ECG signal 

vector to be fed in one value at a time for the entire signal.  

 

2.2.2 Spectrogram Learning 

Spectrograms provided a representation of ECGs in the 

frequency domain using the Fourier transform when 

temporal domain representations alone were not enough. 

The converted 2D frequency-time matrix would then be 

processed like an image. The GoogleNet, winner of the 

2014 ImageNet Large Scale Visual Recognition 

Challenge, was then used to process the resultant 

spectrograms [7]. 

 

2.2.3  A 16-layer convolutional neural 

network  

 
Figure 2: The proposed neural network architecture with 

repeated 16 1D convolutions with skip connections. 

 

A 16-layer CNN was developed for the ECG 

classification task (Figure 2). The design consisted of 16 

sequential skip connections [8], as a means of increasing 

the efficiency of traditional CNNs. 

In each block, the same operations were performed. 

During training, the data was fed into the CNN network 

in batches. To normalise the batch at each layer, batch-

normalization [9] was performed to ensure the numerical 

values throughout the network were scaled to the same 

magnitude. Rectified linear activation (ReLU) units[10] 

were applied to speed up training by further normalising 

the values. Dropout[11] was then used to reduce 

overfitting of the CNN on the training data before the 

convolution layer.  

The convolution layer was the major feature learning 

component of the CNN and involved a 15x1 filter with 

trainable weights that slid across the signals to extract 

features from the waveform. When significant features 

were detected, the filters activated by changings its 

weights to a more significant numerical value. By 

providing the CNN with labelled data, the model was able 

to learn the significant features that characterise different 

classes. 

Pooling layers were added to down sample the signal 

by taking every two values in a vector and reducing it to 1 

value by either averaging the two (average pool) or taking 

the max of the two (max pool). This forced the CNN to 

keep only the most relevant features and also decreased 

the memory burden of such a large network. Pooling 
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layers were also used on the skip connections to maintain 

dimensional consistency when the two separate paths 

joined back together at each block. 

To produce a prediction, a fully connected layer was 

used which transformed the outputs from the convolution 

and pooling layers to a 4x1 vector of numerical values 

corresponding to the outputs for each class (N, A, O or ~). 

A softmax function was used to represent these values as 

a probability by normalising them between 0 and 1.  

The network took 5 seconds long segments as input, 

and produced a prediction for each segment. The model 

output was a probability for each class, and the predicted 

class was the one with the highest probability. The overall 

classification for an entire ECG signal was the mean of 

the individual segment-wise predictions. The training set 

was randomly split into 80% training and 20% validation 

for 5-fold cross validation. The adaptive momentum 

estimation (Adam) optimizer, with a learning rate of 

0.001, was used to optimize the network parameters. 

 

3. Results 

 N A O Overall 

RNN 0.80 0.72 0.64 0.72 

Spectrogram Learning 0.87 0.80 0.68 0.78 

Proposed CNN 0.90 0.82 0.75 0.82 

Table 1: The individual and overall F1 scores 

comparisons for the three machine learning methods. 

 

The performance in each class and the overall F1 score 

of the three investigated models on the test set are shown 

in Table 1. The proposed CNN approach outperformed 

the two traditional techniques by a large margin. 

 

Figure 3: The predicted labels vs the ground truth. 

 

Further analysis was performed on a randomly 

generated validation set from the training set and 

presented as a bar plot (Figure 3). The “N” subgroup had 

the highest classification accuracy (0.90). The “A” 

subgroup classification was the second best (0.86), 

followed by the “O” subgroup (0.85) and lastly the “~” 

subgroup (0.60). As seen from the figure, the CNN model 

had difficulties distinguishing normal sinus rhythm from 

other rhythm, as 8.8% of “N” signals were mistaken for 

“O” and 10% of “O” signals were mistaken for “N”. 

Many “A” were also classified as “O” (9%). Examples of 

signals from the most frequent false classifications are 

shown in Figure 4. 

 

 
Figure 4: Examples of falsely classified signals. 

 

4. Discussion 

4.1 Challenge Dataset 

The challenges of this competition data came from 3 

main factors: relatively small overall dataset, major class 

imbalance across the 4 different classes, and varying 

signal lengths.  

Firstly, despite the dataset being high quality in terms 

of the individual ECG recordings, overall, the dataset is 

still relatively small by today’s standards in the modern 

world of deep learning. In the study by the Ng’s group 

[12], 64,121 recordings with almost 2 million labels were 

used to develop a similar approach to classify ECGs. In 

contrast, the dataset used in this challenge had much less 

data, especially for the “A” and “O” subgroups. 

Secondly, the uneven distribution of the different ECG 

classes introduced additional bias towards subgroups with 

more training data, creating more difficulties when 

classifying groups such as “A” where the number of 

training examples was small compared to “N”. This made 

feature learning especially difficult for the “A” subgroup 

due to the limited examples provided. Furthermore, it was 

not entirely clear what other rhythms were in the “O”. 

This provided further inconsistencies as the “O” class 

could possibly contain significantly different features 

within the same subgroup which would be difficult to 

group together by our CNN. This would also explain our 

observation where many “A” were classified as “O”. 

Lastly, the variation in the length of ECGs introduced 

further problems when developing a model. This was 
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especially problematic as in some scenarios, when an 

ECG recording, which was mostly “N”, had a small 

episode of “A” or “O”, it was very difficult to provide the 

correct classification based on a small signal segment. 

This resulted in many misclassifications between “O” and 

“N”. 

While the proposed CNN approach ignored the data 

inconsistencies, data augmentation could be investigated 

to ease the class imbalance as well as to increase the 

overall dataset size. Adaptive weighted averaging could 

be employed in future development to identify impactful 

segments in the ECGs for a more robust overall predict. 

 

4.2 Performance of the Deep Learning 

Models 

For the three methods investigated, the proposed CNN 

outperformed the others by a clear margin. 

Although the RNN approach was also purely data 

driven, it was significantly limited by its learning capacity, 

while the capacity of the 16-layer CNN was further 

amplified by the skip connections introduced. A further 

limitation of RNN was their large computational costs. 

Due to the feedback mechanisms present, the number of 

computations increase exponentially with every increase 

in the length of the input as during each value input, the 

feedback loop had to be performed on all the previous 

input values. 

The spectrogram method was fairly successful by 

adapting the state-of-the-art GoogleNet to the problem, 

however, transforming the raw wave form into the 

frequency domain was not as effective for learning. 

Furthermore, using an image classification CNN 

significantly constrained the input format into the 

network in terms of tuning the input patch size for 

optimal learning. Since small spectrograms did not 

provide enough information and large spectrograms 

contained sparse information which were both difficult to 

learn from. The proposed CNN, however, processed the 

raw waveform directly, and resulted in greater feature 

learning capabilities and a faster training process by the 

utilized skip connections between layers earlier in the 

network and layers later in the network.  In comparison, 

traditional CNNs only contain layers one after the other, 

from input to output. 

 

5. Conclusions 

We have demonstrated a novel CNN to perform robust 

and efficient automatic ECG signal classification, 

particularly for AF, which could potentially be used to aid 

self-diagnosis for patients in a portable device.  
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