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Abstract

This year’s PhysioNet/CinC challenge aims to stimulate
the development of robust algorithms to classify whether
a short single-lead ECG recording shows normal sinus
rhythm, atrial fibrillation (AF), an alternative rhythm, or
is too noisy to be classified. Since the dataset consist of
more than 8500 recordings, sophisticated methods from
the realm of data fusion and machine learning can be ap-
plied. The approach presented here fuses timing informa-
tion obtained via QRS detection with features from a robust
interval estimator as well as waveform features using a
Random Forest classifier. A super feature vector consisting
of 78 global and 390 moving window features is proposed.
Recursive feature elimination is used to select 25 features
for the final algorithm. Using 10-fold cross-validation on
the training dataset, the average scores F1n = 0.88,
F1a = 0.77, F1o = 0.72, and F1 = 0.79 were achieved.
On the full hidden test set, these values were 0.89, 0.78,
0.68, and 0.78 respectively.

1. Introduction

The PhysioNet/CinC Challenge 2017 aims “to encour-
age the development of algorithms to classify, from a sin-
gle short [electrocardiography] ECG lead recording (be-
tween 30 s and 60 s in length), whether the recording shows
normal sinus rhythm [N], atrial fibrillation (AF) [A], an al-
ternative rhythm [O], or is too noisy to be classified [P].”1

and is described in detail in [1]. In this work, a machine
learning algorithm based on the Random Forest (RF) clas-
sifier [2] is described. As its input, three different fea-
ture extraction strategies and basic statistical analysis (min,
max, mean, median, standard deviation (SD)) are com-
bined.

2. Materials and Method

An overview of the algorithm is given in Figure 1.

1https://physionet.org/challenge/2017/, as of
07.09.2017.
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Figure 1. Schematic overview of the algorithm. Three dif-
ferent approaches for feature extraction are used that are
described in Sections 2.1.1. to 2.1.3.

2.1. Feature Generation

In the following, the initial superset of features v̂ is
described. These can be categorized into three categories
based on their origin.

2.1.1. ECG Timing Features

For the first set of features, the P&T algorithm [3] as
implemented in the example code provided by the orga-
nizers was applied to the normalized (zero mean, unit vari-
ance) ECG x̃ [n]. From the resulting R-peak locations ri,
the RR-intervals δri = ri+1− ri and the RR-accelerations
δ2ri = δri+1 − δri were calculated. Next, the features
presented in Table 1 were derived using basic statistical
analysis.

Statistic
Input (·)

δri δ2ri

min (·) v1 v6
max (·) v2 v7
mean (·) v3 v8
median (·) v4 v9
SD (·) v5 v10

Table 1. Features derived from QRS timing information.
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2.1.2. Robust Interval Features

For the second set, a robust interval estimation ap-
proach [4] was used. This algorithm estimates beat-to-beat
intervals without peak-detection on the raw signal, but ex-
ploits its self-similarity. The original algorithm was devel-
oped for the analysis of ballistocardiography and is based
on the assumption that consecutive beats exhibit similar
morphologies. Even so, the algorithm has proven useful
for beat detection in clinical data [5] and for the reduction
of false alarms in the intensive care unit [6]. For every win-
dow with index j of the signal of interest, the most likely
interval ηj as well as a quality metric qj is reported. The
features v11 to v18 are based on the normalized histogram
of ηj (minimum interval 200 ms, maximum 1800 ms, bin
width 200 ms), see Table 2. Moreover, more basic statisti-

Feature Bin Center [ms] Feature Bin Center [ms]
v11 300 v15 1100
v12 500 v16 1300
v13 700 v17 1500
v14 900 v18 1700

Table 2. Table of robust interval estimation features ex-
tracted via histogram analysis.

cal analysis of the estimated intervals and the quality met-
ric was performed, see Table 3.

Feature Definition
v19 mean (ηj)
v20 SD (ηj)
v21 kurtosis (ηj)
v22 mean |ηj+1 − ηj |
v23 SD |ηj+1 − ηj |
v24 mean (qj)
v25 median (qj)
v26 SD (qj)

Table 3. Table of robust interval estimation features ex-
tracted via basic statistics.

2.1.3. Waveform Features

For the first global features (i.e. without segmentation),
the derivative of the normalized signal x̃′ [n] = x̃ [n+ 1]−
x̃ [n] was analyzed in terms of its standard deviation and in
terms of its kurtosis:

v27 : SD (x̃′ [n])

v28 : kurtosis (x̃′ [n])

Moreover, the median energy of the signal was analyzed
using a set of bandpass filters, see Table 4.

Feature Frequency Feature Frequency
Range [Hz] Range [Hz]

v29 0 - 2 v34 10 - 12
v30 2 - 4 v35 12 - 14
v31 4 - 6 v36 14 - 16
v32 6 - 8 v37 16 - 18
v33 8 - 10 v38 18 - 20

Table 4. Table of unsegmented waveform features v29 to
v38.

Next, the R-peak locations ri were used to segment the
signal and extract the following waveform features: ampli-
tude of each R-peak aR,i, amplitude of each QRS-complex
aQRS,i, amplitude of each T-wave aT,i and area under the
T-wave oT,i. Using the same basic statistical analysis as
before, the features presented in Table 5 are derived.

Statistic
Input (·)

aR,i aQRS,i aT,i oT,i

mini (·) v39 v44 v49 v54
maxi (·) v40 v45 v50 v55
meani (·) v41 v46 v51 v56
mediani (·) v42 v47 v52 v57
SDi (·) v43 v48 v53 v58

Table 5. Table of segmented waveform features v39 to v58.

Finally, the segmentation is used to extract the average
ECG-waveform meani (xi [n′]) = x̄. Here, a fixed win-
dow starting 200 ms before and ending 670 ms after the
QRS complex is used, with n′ ∈ 0 . . . 260 at a sampling
frequency of fs = 300 Hz. To reduce the dimensionality,
Principal Component Analysis is used. For this, x̄ is calcu-
lated for each recording in the training set. Next, the aver-
age over all templates, x̄0 is calculated and subtracted from
each individual template. Singular Value Decomposition
is used to extract the first 20 singular vectors uk, which
are in turn used for classification, v59 = (x̄− x̄0) · u1,
v60 = (x̄− x̄0) ·u2, . . . , v78 = (x̄− x̄0) ·u20. The mean
vector x̄0 and the first two singular vectors u1,2 as well as
u10 and u18 are shown in Figure 2.

2.2. Global and Local Analysis

In the first implementation of the algorithm, the features
described above were calculated globally for each record-
ing. Although first results were promising, this approach
neglects one important aspect: While the majority of the
recording might be normal (or to noisy to evaluate), a short
segment might reveal the true class of the signal. Thus,
in addition to the global examination, a moving window
approach was implemented, where the features described
above were calculated for a window of 10 s duration and a
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Figure 2. Visualization of the mean vector (top row) as
well as the singular vectors 1 (second row), 2 (third row),
10 (fourth row), and 18 (fifth row).

hop-size of 1 s. Thus, for each window position l, a sepa-
rate feature vector ṽl was calculated. To condense the in-
formation, basic statistical analysis is performed, thus re-
sulting in the super feature vector

v̂ =[v,min
l

(
ṽl
)
,max

l

(
ṽl
)
,mean

l

(
ṽl
)
, (1)

median
l

(
ṽl
)
,SD

l

(
ṽl
)
].

2.3. Feature Reduction

In the previous sections, 78 individual features are de-
scribed that constitute the feature vector v. By introducing
the moving window approach, theses features are further
expanded to form a super feature vector v̂ with a grand
total of 6 × 78 = 468 features. This excessive amount of
features has two drawbacks. For one, the computational
cost for training and classification increases, and so does
the risk of overfitting.

To prevent both, recursive feature elimination was per-
formed. For this, Nfeat random forests are trained and 10-
fold cross-validated using all available features except one.
The feature whose omission results in the best F1 score [1],

F1 =
F1n + F1a + F1o

3
,

is omitted for the next iteration. The process is performed
in two step: First, the initial set of 78 features is reduced to-
wards the most useful 18 (global) features. Next, the mov-
ing window approach is used with a super feature vector
of dimensionality 6 × 18 = 108. Again, recursive feature
elimination is performed and visualized in Figure 3.
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Figure 3. Results of the final recursive feature elimina-
tion. The ’x’ marks the manually selected optimum of 25
features, while the ’o’ marks the result using only four fea-
tures.

Based on the results, 25 features are selected in the fi-
nal version of the algorithm, from which 8 are global and
17 are selected from the moving window approach, see Ta-
ble 6.

Strategy Feature ID k
Global vk 1, 4, 14, 22, 25, 32, 59, 68
minl ṽlk 9, 10, 22
maxl ṽlk 9, 14, 51
meanl ṽlk 14
medianl ṽlk 1, 14, 26, 30, 35, 76
SDl ṽlk 10, 13, 26, 51

Table 6. Selected features. Note that the features 59, 68,
and 76 correspond to the projection on the singular vectors
u1, u10, and u18, respectively, see also Figure 2.

3. Results and Discussion

Before submitting the algorithm to the evaluation sys-
tem, 10-fold cross-validation was performed, see Table 7.
Using the challenge’s evaluation system, the following re-
sults were achieved on the full hidden test set:

F1n = 0.89, F1a = 0.78, F1o = 0.68, F1 = 0.78.
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Fold Number of Datasets Scoring
iterate Normal AF Other Noisy

∑
F1n F1a F1o F1

1 505 74 246 28 853 0.89 0.80 0.73 0.81
2 505 74 246 28 853 0.88 0.80 0.68 0.79
3 505 74 245 29 853 0.87 0.72 0.73 0.77
4 505 74 245 29 853 0.87 0.71 0.73 0.77
5 505 74 246 28 853 0.88 0.81 0.74 0.81
6 505 74 246 28 853 0.87 0.76 0.71 0.78
7 505 73 246 29 853 0.89 0.79 0.73 0.80
8 505 74 246 29 854 0.88 0.67 0.69 0.75
9 505 73 245 28 851 0.90 0.82 0.76 0.83

10 505 74 245 28 852 0.87 0.77 0.67 0.77
Mean 505.00 73.80 245.60 28.40 852.80 0.88 0.77 0.72 0.79

SD 0.00 0.42 0.52 0.52 0.79 0.01 0.05 0.03 0.02

Table 7. Results for 10-fold cross-validation on the complete, unbalanced training data.

This places the algorithm on the shared rank 29.
Several observations can be made. First, the results

achieved on the hidden subset and the full test set lie within
the range of the cross-validation results, indicating that no
overfitting occurs. Second, Figure 2 indicates that even a
very large feature set doesn’t lead to massive overfitting but
only leads to an increase in computational cost. Interesting
observations can be made based on the results of the recur-
sive feature selection process. For one, many features are
either based on global calculations or on the robust median
statistic applied to the moving-window approach. More-
over, feature 14, which marks the relative occurrence of
estimated intervals in the range 800 to 1000 ms, seems to
play an important role. If only the four most important fea-
tures are selected, a mean F1 score of 71.01 is achieved
using the features v1, v4, minl ṽ

l
10, and SDl ṽ

l
10, which are

solely based on R-peak timing information. Finally, the
selection of singular vectors (1, 10 and 18) needs further
examination. While u1 clearly codes for the R-peak, u10

shows a distinct increase in the area of the P-wave, whos
absence is characteristic for AF, but which is not explic-
itly analyzed by the other features. On the other hand, u18

exhibits a dominant oscillatory component in the 10 Hz do-
main.

4. Conclusion

An approach that fuses timing information obtained via
QRS detection with features from a robust interval esti-
mator as well as waveform features using a Random For-
est classifier was presented for the automated classifica-
tion of atrial fibrillation. Using recursive feature elimina-
tion, a subset of 25 features proved sufficient to achieve
an F1 score of X on the full hidden evaluation set. Using
only four RR-interval features, a mean score of 71.01 is
achieved via cross-validation of the training set. This find-
ing calls for future exploration of technologies such as ca-

pacitively coupled ECG, where, even though the waveform
might be distorted [7], QRS-dectection is possible in gen-
eral.
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